首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Self-incompatibility, a mechanism that prevents self-fertilization in ascidians, is based on the ability of the oocyte vitelline coat to distinguish and accept only heterologous spermatozoa. In Ciona intestinalis self-discrimination is established during late oogenesis and is contributed or controlled by products of the overlying follicle cells. In this study we have further investigated the role of the follicle cells in the onset of self-discrimination by using in vitro maturation of ovarian oocytes deprived of the follicle cells and incubated with either autologous or heterologous follicle cells. Fertilization assays demonstrate that the action of the follicle cells is exerted even when they are detached from the vitelline coat and that only autologous follicle cells can promote the induction of self-sterility on the egg coat. Electron microscopy of the oocytes during maturation reveals that the switch from self-fertility to self-sterility is accompanied by the appearance of a thin electron-dense layer on the outer surface of the vitelline coat. We suggest that the formation of this layer is the result of the interaction between products of the follicle cells and the autologous vitelline coat.  相似文献   

2.
Self-sterility of solitary ascidians is a typical example of the allogeneic recognition, though its molecular mechanism remains an open question. In this paper we analyze the fertility between siblings from selfed and crossed eggs to understand the genetic basis of self-sterility in the ascidian, Ciona intestinalis. First, we show that the self-sterility is strict and stable, and the individuality expressed in gametes is highly diversified in the wild population that we used. Secondly, we show one-way cross-sterility and reciprocal cross-sterility within the siblings that are self-sterile but fertile with non-siblings. Thirdly, we show self-sterility and cross-sterility share some natures and both are closely related to the sperm capacity not to bind to the vitelline coat of the autologous eggs or the eggs sterile to the sperm concerned. In all, this paper shows that the self-sterility is genetically governed by a multiple-locus system, and that most probably individual-specific determinants are haploid expression in sperm and diploid expression in eggs, given they recognize self but not non-self.  相似文献   

3.
Studies were made on the involvement in sperm-egg interactions of follicle cells of Ciona intestinalis , which are tall, vacuolated cells attached to the outer surface of the egg vitelline coat. The basal surface of the follicle cells is polygonal. The borders between cells could easily be observed by the binding of fluorescent SBA (soy bean agglutinin), a lectin recognizing N-acetylgalactosamine (GaINAc) residues. At fertilization many spermatozoa aggregate along these polygonal borders of cells on the vitelline coat, through which they entered the perivitelline space. The removal of follicle cells was sometimes associated with loss of SBA-binding sites, and in such cases the sperm did not show a hexagonal pattern of aggregation, but became dispersed all over the vitelline coat. Removal of the follicle sometimes delayed fertilization. Examination of sections of gametes stained with DAPI, a fluorescent dye staining DNA, showed that removal of the follicle reduced the number of spermatozoa bound to the vitelline coat and, more especially, the number of spermatozoa penetrating through the vitelline coat. The blockage of GalNAc residues on the vitelline coat with SBA did not appreciably affect the time course of fertilization or the number of sperm associated with eggs. These findings are discussed in relation to the role of follicle cells in facilitating sperm aggregation on the vitelline coat and their penetration through it.  相似文献   

4.
We have examined the formation of the fertilization envelope in the lobsters Homarus americanus and H gammarus. Oocytes were fixed for electron microscopy either in the ovary or following extrusion from the gonopore. Mature ovarian oocytes are surrounded by a coat (envelope 1), which is comprised of small electron-dense granules and structures resembling “bottlebrushes.” At least part of this coat is synthesized by the follicle cells of the ovary. The cortex of ovarian oocytes contains four types of vesicles that we refer to as high-density vesicles (HDV), low-density vesicles (LDV), moderately dense vesicles (MDV), and ring vesicles (RV). Oocytes that were electrically extruded from the gonopore and fixed immediately had an envelope identical to that of ovarian oocytes. The cortex of gonopore oocytes contained the four types of vesicles found in ovarian oocytes. When unfertilized gonopore oocytes were allowed to incubate in sea water, the oocyte cortex appeared unaltered, but envelope 1 swelled and the bottlebrushes dispersed. When recently fertilized oocytes were fixed during natural spawning or following in-vitro fertilization, each type of vesicle was released in sequence from the cortex of the oocyte. The contents of the HDV and LDV appeared first in the perivitelline space, but their fate could not be determined at later times. The ring-shaped elements of the RV and the moderately electron-dense material of the MDV were released exocytotically somewhat later; these materials coalesced in the perivitelline space to form a new coat (envelope 2). Envelope 1 subsequently condensed to its original thickness and appeared firmly attached to envelope 2. Our results show that the fertilized lobster egg is surrounded by two discrete coats. The outer coat, which is formed in the ovary, undergoes a swelling/condensation cycle at spawning. The inner coat originates from a complex cortical reaction. Together these coats comprise the fertilization envelope of the lobster egg.  相似文献   

5.
Immunoelectron microscopic studies demonstrated cortical granule lectins (CGLs) in coelomic, unfertilized and fertilized eggs of Xenopus laevis . An antiserum raised against purified cortical granule lectin 1 specifically reacted with the CGLs in immunoblotting and agar diffusion tests. When ultrathin sections were treated with the antiserum and protein A-gold solution, gold particles, indicating antigenic sites, were seen over cortical granules of coelomic and unfertilized eggs, and over the perivitelline space, the vitelline coat and the condensed region of the fertilization layer of fertilized eggs. The pre-fertilization layer immediately adjacent to the outer margin of the vitelline coat in unfertilized eggs was free from gold particles. These observations suggest that released CGLs permeate through the vitelline coat of fertilized eggs and interact with the pre-fertilization layer mainly at the outer margin of the vitelline coat, resulting in formation of the fertilization layer which acts as a block to polyspermy.  相似文献   

6.
The unfertilized eggs (UFE) of the solitary ascidian, Halocynthia roretzi, which are released naturally, are strictly self‐sterile. However, ovarian eggs isolated after spawning, which are expected to develop into UFE on the following day, are self‐fertile. Some exogenous proteases‐trypsin, chymotrypsin, papain and elastase‐induced self‐sterility in the self‐fertile ovarian eggs within an hour in vitro. The establishment of self‐sterility by the exogenous protease did not require the synthesis of new protein, or the participation of follicle cells. Some of the ovarian eggs were able to differentiate into self‐sterile eggs spontaneously in vitro. The protein synthesis inhibitors puromycin and cycloheximide had no effect on the spontaneous establishment of self‐sterility. However, several protease inhibitors such as leupeptin, soybean trypsin inhibitor (SBTI) and antipain, did inhibit the spontaneous establishment of self‐sterility. The possible participation of trypsin‐like protease in the establishment of self‐sterility in the ovary is discussed. Mol. Reprod. Dev. 52:99–106, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

7.
Gamete self-discrimination in ascidians: a role for the follicle cells   总被引:4,自引:0,他引:4  
Gamete self-incompatibility in the hermaphrodite tunicate Ciona intestinalis is a useful system with which to study self-nonself recognition. We have used in vitro fertilization of oocytes isolated from the gonad of Ciona intestinalis to identify the cellular source of self-sterility elements present on the egg envelopes. Here we show for the first time that self-discrimination, which occurs on the egg vitelline coat, is established there in late oogenesis and is contributed or controlled by products of the overlying follicle cells. The acquisition of self-sterility by the oocyte is prevented by the ionophore monensin, which suggests that the follicle cell self-sterility controlling factor is a glycoprotein.  相似文献   

8.
Summary We have studied the differentiation of the vitelline coat (VC) of the ascidianCiona intestinalis. In the young previtellogenic oocyte the vitelline coat precursor material (VCPM) makes its first appearance as patches of fibrous material in close apposition to the outer surface of the oocyte. The presence of subcortical vescicles containing a fuzzy electron-dense material and their opening into the oocyte surface parallels the formation of VCPM. Numerous microvillar-like structures emerge from the oocyte surface. When the VCPM completely surrounds the oocyte the microvilli are withdrawn. An overall increase of VCPM parallels the growth of the oocyte. The next step in the differentiation of the vitelline coat consists in the packing of the constituent fibrils in a dense layer at its outer surface, i.e. the one in contact with the follicle cells. At this time the VC is penetrated by microvilli protruding both from the oocyte and follicle cells. The VC reaches its final structure and thickness at the time the test cells are extruded into the perivitelline space.The participation of the follicle cells in VC organization is also discussed.  相似文献   

9.
In the self sterile ascidian, Ciona intestinalis , the spermatozoa rarely bind to the vitelline coat of autologous eggs and never penetrate it. We report here that concanavalin A (ConA), a lectin recognizing mannose or glucose residues of carbohydrates, can modify these self- and nonself-specific sperm-egg interactions. When eggs were pretreated with 0.1–0.5 mg/ml of ConA, about two thousand spermatozoa became attached to the autologous vitelline coat within five minutes of insemination. The effect of ConA was not modified by the addition of D-mannose or pretreatment of spermatozoa with ConA, showing that ConA does not function merely as a ligand bridging the sperm and vitelline coat. In contrast to the marked enhancement of sperm-egg binding, ConA did not facilitate the penetration of spermatozoa through the autologous vitelline coat. Even in non-autologous insemination, it blocked the sperm penetration and, consequently, fertilization did not occur, as shown by Rosati et al. (1978). D-Mannose, when mixed with ConA in advance, completely abolished this inhibitory effect of ConA. Lotus agglutinin, a fucose-binding lectin, was less effective and wheat germ agglutinin and soy bean agglutinin had no effect on sperm entry in the perivitelline space. The results of this study are discussed in relation to the possible involvement of mannosyl and/or glucosyl glycoconjugates in allo-specific sperm-egg interactions.  相似文献   

10.
We describe the ultrastructural organization of the vitellogenic follicle stages in two caecilian species. Monthly samples of slices of ovary of Ichthyophis tricolor and Gegeneophis ramaswamii from the Western Ghats of India were subjected to transmission electron-microscopic analysis, with special attention to the follicle cell/oocyte interface. In order to maintain uniformity of the stages among the amphibians, all the stages in the caecilian follicles were assigned to stages I–VI, the vitellogenic and post-vitellogenic follicles being assigned to stages III–VI. Stage III commences with the appearance of precursors of vitelline envelope material in the perivitelline space. Stages IV and V have been assigned appropriate substages. During the transition of stage III to stage VI oocytes, a sequential change occurs in the manifestations of follicle cells, perivitelline space, vitelline envelope and oocyte cortex. The vitelline envelope becomes a tough coat through the tunnels of which the macrovilli pass to interdigitate between the microvilli. The oocyte surface forms pinocytic vesicles that develop into coated pits and, later, coated vesicles. Contributions of the oocyte cortex to the vitelline envelope and of the follicle cells to yolk material via synthesis within them are indicated. The follicle cell/oocyte interface of vitellogenic follicles of these two caecilians resembles that in anurans and urodeles, with certain features being unique to caecilians. Thus, this paper throws light on the possible relationships of caecilians to anurans and urodeles with special reference to ovarian follicles. This research was supported by funds from the Kerala State Council for Science, Technology and Environment (KSCSTE), through the SARD facility, and by the FIST scheme of Department of Science and Technology, Government of India, New Delhi, to the Department of Zoology, University of Kerala, Thiruvananthapuram, and to the Department of Animal Science, Bharathidasan University, Thiruchirapalli (SR/FST/LSI-233/2002).  相似文献   

11.
Denuded oocytes freed of their vitelline envelope have been prepared by two methods, enzymatically with pronase and manually by microdissection. The response of denuded oocytes to progesterone, in terms of germinal vesicle breakdown (GVBD), was similar to that obtained with defolliculated oocytes (separated with collagenase from follicle cells, but still keeping their vitelline membrane). The same conclusion was drawn with respect to morphological features of the oocyte surface observed by transmission and scanning electron microscopy, before and after progesterone-induced GVBD. The synergistic effect of insulin and progesterone in denuded oocytes was comparable to that observed in defolliculated oocytes. Multiplication stimulating activity (MSA) had the same effect as insulin. These observations indicate that hormones act directly upon oocytes, without interference of the surrounding vitelline envelope and follicle cells.  相似文献   

12.
东方扁虾卵子发生的超微结构   总被引:2,自引:0,他引:2  
根据卵细胞的形态、内部结构特征及卵母细胞与滤泡细胞之间的关系,东方扁虾的卵子发生可划分为卵原细胞、卵黄发生前卵母细胞、卵黄发生卵母细胞和成熟卵母细胞等四个时期。卵原细胞胞质稀少,胞器以滑面内质网为主。卵黄发生前卵母细胞核明显膨大,特称为生发泡;在靠近核外膜的胞质中可观察到核仁外排物。卵黄发生卵母细胞逐渐为滤泡细胞所包围;卵黄合成旺盛,胞质中因而形成并积累了越来越多的卵黄粒。东方扁虾卵母细胞的卵黄发生是二源的。游离型核糖体率先参与内源性卵黄合成形成无膜卵黄粒。粗面内质网是内源性卵黄形成的主要胞器。滑面内质网、线粒体和溶酶体以多种方式活跃地参与卵黄粒形成。卵周隙内的外源性物质有两个来源:滤泡细胞的合成产物和血淋巴携带、转运的卵黄蛋白前体物。这些外源性物质主要通过质膜的微吞饮作用和微绒毛的吸收作用这两种方式进入卵母细胞,进而形成外源性卵黄。内源性和外源性的卵黄物质共同参与成熟卵母细胞中富含髓样小体的卵黄粒的形成。卵壳的形成和微绒毛的回缩被认为是东方扁虾卵母细胞成熟的形态学标志。    相似文献   

13.
The ultrastructural organization of the previtellogenic follicles of the caecilians Ichthyophis tricolor and Gegeneophis ramaswamii, of the Western Ghats of India, were observed. Both species follow a similar seasonal reproductive pattern. The ovaries contain primordial follicles throughout the year with previtellogenic, vitellogenic, or postvitellogenic follicles, depending upon the reproductive status. The just-recruited primordial follicle includes an oocyte surrounded by a single layer of follicle and thecal cells. The differentiation of the theca into externa and interna layers, the follicle cells into dark and light variants, and the appearance of primordial yolk platelets and mitochondrial clouds in the ooplasm mark the transition of the primordial follicle into a previtellogenic follicle. During further development of the previtellogenic follicle the following changes occur: i) the theca loses distinction as externa and interna; ii) all the follicle cells become the dark variant and increase in the complexity of ultrastructural organization; iii) the nucleus of the oocyte transforms into the germinal vesicle and there is amplification of the nucleoli; iv) the primordial yolk platelets of the cortical cytoplasm of the oocyte increase in abundance; v) the mitochondrial clouds fragment and the mitochondria move away from the clouds, leaving behind the cementing matrix, which contains membrane-bound vesicles of various sizes, either empty or filled with a lipid material; vi) the perivitelline space appears first as troughs at the junctional points between the follicle cells and oocyte, which subsequently spread all around to become continuous; vii) macrovilli and microvilli develop from the follicle cells and oocyte, respectively; and viii) the precursor material of the vitelline envelop arrives at the perivitelline space. The sequential changes in the previtellogenic follicles of two species of caecilians are described.  相似文献   

14.
In starfish ovaries follicle cells that envelop each oocyte are thought to mediate the production of a maturation inducing substance (MIS), identified as 1-methyladenine, that induces maturation and spawning of oocytes after exposure to a gonadotropic substance secreted by the radial nerve (RNF). Studies were carried out to assess the possible role of extrafollicular cells within the ovarian wall in mediating this signal transduction process in the ovary of Pisaster ochraceus. Oocyte maturation and spawning occurred following the addition of RNF to intact ovarian tissue in vitro whereas no maturation occurred following the addition of RNF to germinal vesicle (GV) oocytes or GV oocytes surrounded by follicle cells. In contrast, oocyte maturation occurred when small ovarian wall fragments, lacking mature follicles, were incubated with GV oocytes and RNF. Neither actinomycin D nor cycloheximide altered RNF induction of oocyte maturation in the presence of the ovarian wall tissue whereas preheating (boiling water for 5 min) the tissue obliterated its response to RNF. Non-ovarian tissues failed to produce MIS in response to RNF. Results suggest that ovarian components other than the follicle cells that envelop fully grown immature oocyte are responsive to RNF and represent a significant and previously unrecognised intra-ovarian source of MIS.  相似文献   

15.
The "contact reaction" is an extremely rapid allogeneic cytotoxic reaction (ACR) mediated by hemocytes in the solitary ascidian Halocynthia roretzi. It has been proposed that regulation of the alloreactivity of hemocytes may be involved in preference for fertilization or self-sterility in this species. To identify the receptors and target ligands involved both in self-recognition by somatic cells and self-discrimination by gametes, we produced monoclonal antibodies (mAbs) that inhibit the ACR mediated by hemocytes and tested their effects on fertilization. Six different mAbs that inhibit the ACR were prepared and categorized into three groups. Although all three mAbs seemed to have the same ability to inhibit the ACR, almost constant and statistically significant inhibition (CRB1.1) and infrequent but significant inhibition (CRB2.1, and CRB3.1) of the ACR were observed in the same pairs of animals. Pretreatment of the unfertilized eggs with CRB1.1, CRB2.1, and CRB3.1, resulted in the constant and statistically significant inhibition, infrequent but significant inhibition, and no inhibition, respectively, of fertilization. Antigens recognized by CRB1.1 (CRB1.1 antigens) were detected on the cell surface of all types of hemocytes and on the vitelline coat and follicle cells of unfertilized eggs. CRB2.1 and CRB3.1 antigens were detected on the surface of certain types of hemocytes and follicle cells, but not on the vitelline coat. CRB mAbs were directed against different epitopes in the N-linked glycan on glycoproteins. These common carbohydrate antigens on somatic cells and gametes may function in some recognition processes in ACR and fertilization in H. roretzi.  相似文献   

16.
The acrosome in the sperm of the toad, Bufo bufo japonicus, consists of a membrane-limited acrosomal cap and a fibrous perforatorium. When sperm are incubated with the oviducal pars recta extract (PRE) for 30–60 min, the outer acrosomal membrane fuses with the overlying plasma membrane at several points with concomitant loss of the contents of the acrosomal cap. The inner acrosomal membrane thus exposed fuses with the plasma membrane at the caudal end of the acrosomal region. This PRE-induced acrosome reaction is completely inhibited by soybean trypsin inhibitor. Sperm found in the innermost jelly layer of inseminated eggs possess an intact acrosome, but those either passing through the vitelline coat or localizing in the perivitelline space are acrosome-reacted in the same manner as when treated with PRE. These observations, combined with recent evidence showing involvement of the pars recta substance in fertilization, indicate that the acrosome reaction occurring in a fertilizing sperm at or near the surface of the vitelline coat is a response to a substance that is derived from the pars recta and deposited in the vitelline coat.  相似文献   

17.
Spermatozoa should bind to and then penetrate the vitelline coat for fertilization in ascidians and many other animals. There is substantial evidence that the binding of ascidian sperm is mediated by a sperm glycosidase and complementary saccharide chains of glycoproteins in the vitelline coat. Involvement of a sperm proteasome in the binding is also suggested. For the penetration, sperm proteases such as chymotrypsin-like enzyme, acrosin, spermosin and proteasome are suggested to play essential roles. Sperm glycosidase, that is translocated from the tip of sperm head to the surface overlying the mitochondrion, anchors the mitochondrion at the outer surface of vitelline coat. Therefore it assists sperm to penetrate the vitelline coat and traverse the perivitelline space. For fusion with egg plasma membrane, sperm metalloendoprotease seems to be involved. Egg glycosidases and proteases serve for some steps after fertilization, such as the prevention of polyspermy, expansion of perivitelline space and regulation of cell cycle.  相似文献   

18.
In this, the first fine structural study of sea cucumber embryology, eggs and embryos of Stichopus tremulus developing at 7.5°C are described from spawning through hatched blastulae. Spawned eggs are at about first meiotic metaphase and are surrounded by a jelly layer that remains around the embryos until hatching. No vitelline coat can be demonstrated, but whether it is truly absent or removed by electron microscopic processing is not known. Insemination initiates a rapid cortical reaction, completed within 2 min., which involves a wave of cortical granule exocytosis and fertilization envelope formation. The compactly fibrous fertilization envelope is about 50 nm thick and appears to consist entirely of ejected cortical granule material (if one assumes that there is no vitelline coat). As the fertilization envelope elevates, no hyaline layer appears in the perivitelline space. The first and second polar bodies are emitted, respectively, at about 9 and 15 min. after insemination. The first seven or so cleavages are equal, radial, and occur approximately every 4 hr. The blastocoel opens up at the four-cell stage and, during the earlier cleavages, remains connected with the perivitelline space via numerous gaps between the roughly spherical blastomeres. At the 64-cell stage, these gaps begin to close as the blastomeres start to become cuboidal; in addition, an embryonic cuticle is produced on the apical surface of each blastomere. In embryos of several hundred cells, the blastomeres become associated apicolaterally by junctional complexes, each consisting of a zonula adherens and a septate junction. Several hours before hatching, a single cilium is produced at the apical surface of most blastomeres. At hatching (about 50 hr after insemination), the ciliated blastula leaves behind the fertilization envelope and jelly layer. Swimming blastulae soon begin to elongate in the animal-vegetal axis, and a basal lamina develops on blastomere surfaces facing the blastocoel. The discussion includes a fine structural comparison of egg coats among the five classes of the phylum Echinodermata.  相似文献   

19.
Abstract. The ultrastructural features of the ovary and oogenesis have been described in 6 species of patellid limpets from South Africa. The ovary is a complex organ that is divided radially into numerous compartments or lacunae by plate-like, blind-ended, hollow trabeculae that extend from the outer wall of the ovary to its central lumen. Trabeculae are composed of outer epithelial cells, intermittent smooth muscle bands, and extensive connective tissue. Oocytes arise within the walls of the trabeculae and progressively bulge outward into the ovarian lumen during growth while partially surrounded by squamous follicle cells. During early vitellogenesis, the follicle cells lift from the surface of the underlying oocytes and microvilli appear in the perivitelline space. Follicle cells restrict their contact with the oocytes to digitate foot processes that form desmosomes with the oolamina. When vitellogenesis is initiated, the trabecular epithelial cells hypertrophy and become proteosynthetically active. Yolk synthesis involves the direct incorporation of extraoocytic precursors from the lumen of the trabeculae (hemocoel) into yolk granules via receptor-mediated endocytosis. Lipid droplets arise de novo and Golgi complexes synthesize cortical granules that form a thin band beneath the oolamina. A fibrous jelly coat forms between the vitelline envelope and the overlying follicle cells in all species.  相似文献   

20.
Dendraster excentricus eggs fertilized in ConA (10 μg/ml) elevate vitelline layers and expel cortical granule contents into the perivitelline space. The granule material does not disperse but remains composed as discrete spheres. The elevated vitelline layer remains thin and weak. It is not a true fertilization membrane because it lacks the structural material supplied by the granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号