首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang XY  Chen ZW  Xu T  Qu Z  Pan XD  Qin XH  Ren DT  Liu GQ 《The Plant cell》2011,23(3):1093-1106
The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature. Using in vitro biochemical methods and in vivo transgenic cell observations, we demonstrate that KP1 is able to localize to mitochondria via its tail domain (C terminus) and specifically interacts with a mitochondrial outer membrane protein, voltage-dependent anion channel 3 (VDAC3). Targeting of the KP1-tail to mitochondria is dependent on the presence of VDAC3. When grown at 4° C, KP1 dominant-negative mutants (TAILOEs) and vdac3 mutants exhibited a higher seed germination frequency. All germinating seeds of the kp1 and vdac3 mutants had increased oxygen consumption; the respiration balance between the cytochrome pathway and the alternative oxidase pathway was disrupted, and the ATP level was reduced. We conclude that the plant-specific kinesin, KP1, specifically interacts with VDAC3 on the mitochondrial outer membrane and that both KP1 and VDAC3 regulate aerobic respiration during seed germination at low temperature.  相似文献   

2.
The activity of the cyanide-resistant alternative oxidase (pathway) of Y. lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

3.
The activity of the cyanide-resistant alternative oxidase (pathway) of Yarrowia lipolytica mitochondria was studied as a function of the activity of the major, cyanide-sensitive, cytochrome pathway. The contribution of the alternative oxidase to the total respiration of mitochondria was evaluated by measuring the rate of oxygen consumption in the presence of cyanide (an inhibitor of the cytochrome pathway). The potential activity of the cytochrome pathway was evaluated spectrophotometrically, by measuring the oxidation rate of cytochrome c by ferricyanide, which accepts electrons from complex III (cytochrome c) of this pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was accompanied by oxygen consumption due to the transfer of electrons through the alternative pathway. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation in the cytochrome pathway) completely inhibited the consumption of oxygen by the mitochondria. Under these conditions, the inhibition of the alternative pathway by benzohydroxamic acid failed to affect the transfer of electrons from cytochrome c to ferricyanide. Benzohydroxamic acid did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These findings indicate that the alternative pathway is unable to compete with the cytochrome respiratory chain for electrons. The alternative pathway transfers only electrons that are superfluous for the cytochrome chain.  相似文献   

4.
The effects of KCN (0.5mmol/L) and NaN3 (0.01 mmol/L) pretreatment on the operation of the alternative pathway in subcultured tobacco (Nicotiana rustica L. cv. Gansu yellow flower) callus were analyzed. After treatment with KCN and NaN3 for 12 h, the total respiration rate (Vt) decreased by 12% and 17%, whereas oxygen consuption by the cytochrome pathway decreased by 22% and 28% respectively. The capacity of the alternative pathway (Valt) remained constant, while the activity of the alternative pathway (ρ· Valt ) inreased slightly. This changing pattern led to a declined contribution of the cytochrome pathway to the total respiration rate and an increased activity of the alternative pathway. Treatment with KCN for 24 h brought about a slight rise of oxygen consumption by the cytochrome pathway as compared with that in callus treated for 12 h, but the oxygen consumption was still lower than that in the untreated callus. Treatment with NaN3 for 24 h resulted in a profound decrease of the cytochrome pathway operation and a continuing increase of the alternative pathway operation. These data indicated that the enhanced operation of the alternative pathway played a compensatory role to the total respiration when the cytochrome pathway was partially inhibited in tobacco callus.  相似文献   

5.
实验结果表明:照光时绿豆叶片分离线粒体通过细胞色素氧化酶途径的NADH氧化部分受阻,电子转向交替途径。不产生能量,不受能荷控制的NADH氧化途径有利于绿色细胞线粒体在光合作用时执行其提供碳架的功能。看来绿色细胞线粒体本身具有对光的敏感性,在照光时调节呼吸途径以适应其功能的转换。呼吸途径的转换机制目前还不清楚。绿豆种子线粒体与叶片线粒体不同,没有上述的这种对光的反应。  相似文献   

6.
Respiratory pathways in aged soybean seeds   总被引:1,自引:0,他引:1  
Respiratory activities in soybean seeds (Glvcine max (L.) Merr. cv. Chippewa 64) have been examined in the first minutes after water imbibition and after three hours of imbibition, using either particles or intact axes. Cyanide and azide were utilized as inhibitors of the cytochrome oxidase pathway of respiration, and SHAM inhibitions were interpreted as effects on the alternative pathway, since in unaged axes inhibitions by SHAM were obtained only when respiratory activity had either been restricted with inhibitors of the cytochrome oxidase pathway or expanded by an uncoupler (CCCP). From the experiments with these inhibitors, it is suggested that unaged seeds utilize both respiration pathways in the cotyledon but only the cytochrome pathway in the axis. Accelerated aging causes a marked deterioration of respiration, especially that through the cytochrome pathway, and there is an associated engagement of the alternative pathway in the seed axis. It is suggested that the lowering of respiratory activity and the shift in respiratory pathways may play a major role in the decline of germinability and vigor.  相似文献   

7.
Treatment of cotyledons of 4-day-old cucumber (Cucumis sativus L. cv. Tokiwa-jibae) seedlings with cycloheximide (0.3 m M ) inhibited protein synthesis in the cotyledons by 80%. In spite of this inhibition, the cycloheximide treatment induced a marked increase in the capacity of the alternative respiration in mitochondria, accompanied by an increase in the contribution of the pathway to the total respiration. In contrast, the activity of the cytochrome pathway was reduced by cycloheximide treatment. As a result, the total respiration was almost the same in mitochondria from cycloheximide-treated cotyledons and untreated cotyledons. Activities of some mitochondrial enzymes examined were also similar. Mitochondrial proteins synthesized during the treatment were separated by two-dimensional gel-electrophoresis and examined by fluorography. No new spots appeared and no spots disappeared on the fluorograms, but the labeling intensity of some polypeptides showed a relative increase or decrease as the result of cycloheximide treatment.  相似文献   

8.
The degree of involvement of cyanide-resistant alternative oxidase in the respiration of Yarrowia lipolytica mitochondria was evaluated by comparing the rate of oxygen consumption in the presence of cyanide, which shows the activity of the cyanide-resistant alternative oxidase, and the oxidation rate of cytochrome c by ferricyanide, which shows the activity of the main cytochrome pathway. The oxidation of succinate by mitochondria in the presence of ferricyanide and cyanide was associated with oxygen consumption due to the functioning of the alternative oxidase. The subsequent addition of ADP or FCCP (an uncoupler of oxidative phosphorylation) completely inhibited oxygen consumption by the mitochondria. Under these conditions, the inhibition of the alternative oxidase by benzohydroxamic acid (BHA) failed to affect the reduction of ferricyanide at the level of cytochrome c. BHA did not influence the rate of ferricyanide reduction by the cytochrome pathway occurring in controlled state 4, nor could it change the phosphorylation quotient ATP/O upon the oxidation of various substrates. These data indicate that the alternative system is unable to compete with the cytochrome respiratory chain for electrons. The alternative oxidase only transfers the electrons that are superfluous for the cytochrome respiratory chain.  相似文献   

9.
Etiolated Euglena gracilis Pringsheim, strain Z, were cultured in a lactate medium either in the presence of 2 μ M antimycin A for cells adapted to this inhibitor, or in the absence of antimycin A for controls. The adenylates (ATP, ADP and AMP) and the energy charge (EC) were followed during the growth of both types of cells. The effects of KCN, salicylhydroxamic acid (SHAM) and rotenone on the respiration and the adenylate pool, were investigated during the exponental and stationary phases. EC values of controls and antimycin-adapted cells were not significantly different during culture. In the logarithmic phase, EC of controls was unaffected by 3 m M SHAM, an inhibitor of the alternative pathway, but markedly decreased by 0.3 m M KCN, which inhibits the cytochrome pathway. In contrast, in antimycin-adapted Euglena , in which the cytochrome pathway was blocked, ATP content and EC were markedly lowered in the presence of SHAM but slightly increased by 0.3 m M KCN. The combination of the preceeding treatments, as well as 15 m M KCN alone, were deleterious for both types of cells, in the logarithmic and the late stationary phases. The data indicate that the energy level in Euglena was dependent on the alternative pathway when the cytochrome pathway was blocked. Such dependence could be explained by the engagement of the first rotenone-sensitive site of phosphorylation. Indeed, 50 μ M rotenone caused a similar relative decrease of oxygen consumption and ATP content in controls and in antimycin-adapted Euglena . In the absence of cytochrome respiration, the alternative pathway allowed electrons to flow through this first segment of the respiratory chain, and ATP production by the first site of phosphorylation.  相似文献   

10.
Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.  相似文献   

11.
Incubation of potato tuber tissue discs on B5 medium supplemented with 1-naphtyl-acetic acid (NAA) led to callus formation, irrespective of the presence of kinetin; without NAA no callus formation occurred. Incubation in the presence of abscisic acid (ABA) reduced the increases in fresh weight and dry weight both in callus-forming and in non-callus-forming tissue. Mitochondrial respiration was lowered by ABA as well. The induction of the alternative, CN-resistant pathway was inhibited by the presence of ABA, especially in mitochondria from non-callus-forming tissue.The in vivo respiration of the callus-forming tissue was higher than that of the non-callus-forming tissue. Total respiration, cytochrome pathway activity and the capacity of the alternative pathway were all lowered in callus-forming tissue by treatment with ABA. The in vivo activity of the alternative pathway was low in all tissue types, especially after ABA-treatment. The slight stimulation by hydroxamates of the oxygen uptake of callus-forming tissue incubated on medium with NAA and ABA indicates the involvement of a hydroxamate-activated peroxidase in the oxygen uptake of this tissue; this peroxidase seemed not to participate in the oxygen uptake of the other tissues types.In non-callus-forming tissue the oxygen uptake of ABA-treated tissue was very low and almost completely resistant to the combined addition of inhibitors of both the cytochrome and the alternative pathway, indicating that the in vivo activity of the mitochondria in the oxygen uptake of the tissue was very low. The possible causes for this ABA-effect are discussed. In non-callus-forming tissue the treatment with ABA creates a situation which is comparable with that observed in intact potato tubers. This situation is characterized by a tissue respiration lower than that of the isolated mitochondria and an alternative pathway capacity that is low or absent.  相似文献   

12.
We investigated the expressions of genes for alternative oxidase (AOX1a, AOX1b, AOX1c and AOX2) and genes for cytochrome c oxidase (COX5b and COX6b) during germination of Arabidopsis thaliana, and examined oxygen uptakes of the alternative respiration and the cytochrome respiration in imbibed Arabidopsis seeds. A Northern blot analysis showed that AOX2 mRNA has already accumulated in dry seeds and subsequently decreased, whereas accumulation ofAOX1a mRNA was less abundant from 0 hours to 48 hours after imbibition and then increased. The increase of the capacity of the alternative pathway appeared to be dependent on the expressions of both AOX2 and AOX1a. On the other hand, steady-state mRNA levels of COX5b and COX6b were gradually increased during germination, and the capacity of the cytochrome pathway was correlated with the increase of expressions of the COX genes. Antimycin A, the respiratory inhibitor, strongly increased the expression of AOX1a but had no effect on the expression of AOX2. A 5'RACE analysis showed that AOX2 consists of five exons, which is different from the case of most AOX genes identified so far. Analysis of subcellular localization of AOX2 using green fluorescent protein indicated that the AOX2 protein is imported into the mitochondria.  相似文献   

13.
The regulation of electron partitioning between the cytochrome (Cyt) and alternative pathways in soybean (Glycine max L. cv Ransom) mitochondria in the absence of added inhibitors has been studied using the oxygen isotope fractionation technique. This regulation can depend on several factors, including the amount of alternative oxidase protein, the redox status of the alternative oxidase regulatory sulfhydryl-disulfide system, the degree of activation by [alpha]-keto acids, and the concentration and redox state of the ubiquinone pool. We studied electron partitioning onto the alternative pathway in mitochondria isolated from etiolated and light-grown cotyledons and roots to ascertain how these factors interact in different tissues. In light-grown cotyledon mitochondria there is some partitioning to the alternative pathway in state 4, which is increased dramatically by either pyruvate or dithiothreitol. In etiolated cotyledon mitochondria, the alternative pathway shows little ability to compete for electrons with the Cyt pathway under any circumstances. In root mitochondria, control of alternative pathway activity is exercised by both the ubiquinone pool and the regulatory sulfhydryl-disulfide system. In addition, oxygen isotope fractionation by the Cyt and alternative pathways in mitochondria were identical to the fractionation for the respective pathways seen in intact tissue, suggesting that residual respiration is not present in the absence of inhibitors.  相似文献   

14.
By addition of chloramphenicol (CAP) to the growth medium of green soybean ( Glycine max L.) cells in batch culture, growth is inhibited and the activity of the cytochrome oxidase decreases to 60% of the value found in control cells. The presence of CAP induces an enhancement of the contribution of the alternative pathway to total respiration. This enlarged contribution results both from a higher capacity of the alternative pathway and from a greater part of this capacity being used. Also in mitochondria isolated from cells treated with CAP, a higher capacity of the alternative pathway has been found, while the part of this capacity which is really used is comparable with the values found in control cells.  相似文献   

15.
We have assessed the activities of the cytochrome and alternative pathways in total respiration and their role in each stage of germination of Zea mays L. radicles. Throughout imbibition, the salicylhydroxamic acid (SHAM) concentration needed to inhibit the cyanide-resistant pathway, without any side effects, decreased from 15 m M in quiescent embryos to 5 m M at 72 h after imbibition. Electrons predominantly flowed through the cytochrome pathway although the alternative pathway was already present at early imbibition. The capacity of the alternative path was about 70% of the control rate of respiration. Its engagement progressively increased from 18% after 10 min of imbibition to 70% at the radicle emergence and then decreased to 50% at 96 h after imbibition, concomitant with the onset of radicle growth. The alternative pathway was, however, not essential for germination. The observed activity of the alternative path correlated with the monosaccharide (glucose + fructose) content, suggesting that the alternative pathway could be acting according to the 'energy overflow model'. On the other hand, up to 24 h after imbibition at 16°C, maize radicles tolerate a severe desiccation, becoming intolerant at 72 h. On reimbibition of tolerant radicles, respiration increased immediately and the alternative pathway was rapidly engaged. At 72 h, no respiration was measured, indicating a total loss of the respiratory systems. The possible correlation between carbohydrate content, loss of desiccation tolerance and activity of the two respiratory pathways is discussed.  相似文献   

16.
The contribution of the cyanide-resistant, alternative pathway to plant mitochondrial electron transport has been studied using a modified aqueous phase on-line mass spectrometry-gas chromatography system. This technique permits direct measurement of the partitioning of electrons between the cytochrome and alternative pathways in the absence of added inhibitors. We demonstrate that in mitochondria isolated from soybean (Glycine max L. cv Ransom) cotyledons, the alternative pathway contributes significantly to oxygen uptake under state 4 conditions, when succinate is used as a substrate. However, when NADH is the substrate, addition of pyruvate, an allosteric activator of the alternative pathway, is required to achieve the same level of alternative pathway activity. Under state 3 conditions, when the reduction state of the ubiquinone pool is low, the addition of pyruvate allows the alternative pathway to compete with the cytochrome pathway for electrons from the ubiquinone pool when the cytochrome pathway is not saturated. These results provide direct experimental verification of the kinetics consequences of pyruvate addition on the partitioning of electron flow between the two respiratory pathways. This distribution of electrons between the two unsaturated pathways could not be measured using conventional oxygen electrode methods and illustrates a clear advantage of the mass spectrometry technique. These results have significant ramifications for studies of plant respiration using the oxygen electrode, particularly those studies involving intact tissues.  相似文献   

17.
Soybean Seed Respiration During Simulated Preharvest Deterioration   总被引:2,自引:0,他引:2  
Rapid decline of seed quality limits soybean production in thelowland tropies. Seed deterioration is promoted by delayed harvestunder high ambient temperature and relative humidity. To evaluatechanges in respiration during deterioration, soybean seed weresubjected to four controlled, constant or fluctuating, watercontent regimes at 25°C and 32°C to simulate the postmaturation,preharvest environment. Seed deteriorated rapidly under highwater content regimes at 32°C and were non-viable by 20d. Low rates of oxygen uptake during early imbibition correlatedwith deterioration and were attributed to a decline in the integrityof the cyanide-sensitive cytochrome pathway. However, tissuessubjected to high water content fluctuation at 32°C for20 d had high rates of oxygen uptake due mainly to ‘residual’respiration. Only small increases in alternative respirationand lipoxygenase activity occurred during deterioration. A markedincrease in ethanol content during imbibition indicated a shiftfrom aerobic to anaerobic metabolism induced by the declinein the cytochrome pathway. A reduction in tetrazolium stainingwas not accompanied by decreased activity of alcohol dehydrogenaseor malate dehydrogenase. Reduced pyruvate metabolism throughthe tricarboxylic acid cycle and a concomitant decline in NADHlevels were proposed to limit dehydrogenase activity in vivocausing the decreased staining of tissues. The mitochondriaappear to be the site of a primary lesion during seed deteriorationunder combinations of high water content and high temperature. Key words: Cytochrome, alternative-respiration, germination  相似文献   

18.
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two‐dimensional gel electrophoresis (2‐DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell‐shaped change with peaks at 35–45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35–70 DAP), some stress‐ and detoxification‐related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well‐protected, presumably to ensure that the embryo passes through maturation, drying and long‐term storage. These results advance our understanding of seed development at the organelle level.  相似文献   

19.
Cyanide-resistant respiration was studied in mitochondria isolated from the roots of bean plants ( Phaseolus vulgaris L. cv. Złota Saxa) grown hydroponically up to 16 days on a phosphate-sufficient (+P, control) or phosphate-deficient (−P) medium. Western blotting indicated that the alternative oxidase (AOX) was present only in its reduced (active) form, both in phosphate-sufficient and phosphate-deficient roots, but in the latter, the amount of AOX protein was greater. Addition of pyruvate to the isolation, washing and reaction media made mitochondria from +P roots cyanide-insensitive, similar to mitochondria from −P roots. The doubled activity of NAD-malic enzyme (NAD-ME) in −P compared with +P root mitochondria may suggest increased pyruvate production in −P mitochondria. Lower cytochrome c oxidase (COX) activity and no uncoupler effect on respiration indicated limited cytochrome chain activity in −P mitochondria. In −P mitochondria, the oxygen uptake decreased and the level of Q reduction increased from 60 to 80%. With no pyruvate present (AOX not fully activated), inhibition of the cytochrome pathway resulted in an increased level of the ratio of reduced ubiquinone (Qr) to total ubiquinone (Qt) (Qr/Qt) in +P mitochondria, but did not change Qr/Qt in −P mitochondria. When pyruvate was present, the kinetics for AOX were similar in mitochondria from −P and +P roots. It is suggested that AOX participation in −P respiration may provide an acclimation to phosphate deficiency. Stabilization of the ubiquinone reduction level by AOX might prevent the harmful effect of an increased formation of reactive oxygen species.  相似文献   

20.
Respiratory Activity in Pea Cotyledons during Seed Development   总被引:2,自引:1,他引:1  
Three phases were recognized in the course of the respirationrate of pea (Pisum sativum L.) cotyledons during seed development.(1) The respiration rate per cotyledon initially increased alongwith the mitochondrial activity. (2) During the second phase,the respiration rate increased further until a constant levelwas reached and then decreased. The mitochondria now startedto lose their capacity to oxidize malate, followed by a decreasingcapacity to oxidize succinate. (3) During the maturation phasethe respiration rate decreased further. The rate of ascorbateoxidation started to decline at this time. Ascorbate oxidationwas increasingly stimulated by cytochrome c. The changes inrespiration rate are considered in relation to changes in growthand maintenance respiration. When the water content of the seeds was maintained by storingthem at high humidity, the respiration rate of cotyledons ofearly harvested seeds decreased sharply whereas that of laterharvested seeds hardly changed. This change in response wasused to mark the transition between the second and third phase.During humid storage changes in the functional integrity ofthe mitochondria still occurred. The results are discussed in relation to the ability of peaseeds to withstand desiccation. Key words: Pisum sativum, Seed development, Respiration, Mitochondrial activity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号