首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.
To investigate the potential roles of matrix metalloproteinases (MMPs) in ovarian granulosa cell differentiation, we studied the interactive effects of FSH and local ovarian factors, transforming growth factor beta1 (TGFbeta1) and androstenedione, on gelatinase secretion and progesterone production in rat ovarian granulosa cells. Granulosa cells of eCG-primed immature rats were treated once with various doses of FSH and TGFbeta1 and androstenedione alone or in combinations for 2 days. Conditioned media were analyzed for gelatinase activity using gelatin-zymography/densitometry and progesterone levels using enzyme immunoassay. Cell lysates were analyzed for steroidogenic acute regulatory (StAR) and cholesterol side-chain-cleavage (P450scc) enzyme protein levels. This study demonstrates for the first time that FSH dose-dependently increased the secretion of a major 63-kDa gelatinase and minor 92- and 67-kDa gelatinases. TGFbeta1 also dose-dependently increased the secretion of 63-kDa gelatinase, while androstenedione alone had no effect. The 92-kDa gelatinase was identified as the pro-MMP9 that could be cleaved by aminophenylmercuric acetate into the 83-kDa active form. Importantly, we show that TGFbeta1 and androgen act in an additive manner to enhance FSH stimulatory effects both on the secretion of gelatinases and the production of progesterone. We further show by immunoblotting that the enhancing effect of TGFbeta1 and androstenedione on FSH-stimulated steroidogenesis is partly mediated through the increased level of StAR protein and/or P450scc enzyme. In conclusion, this study indicates that, during antral follicle development, TGFbeta1 and androgen act to enhance FSH promotion of granulosa cell differentiation and that the process may involve the interplay of modulating cell- to-matrix/cell-to-cell interaction and steroidogenic activity.  相似文献   

3.
While human dermal fibroblasts increase the expression and secretion of distinct matrix metalloproteinases (MMPs) in response to ultraviolet (UV) irradiation, much less is known about regulation of MMPs with regard to normal human epidermal keratinocytes (NHEK). In this in vitro study, the effect of ultraviolet A (UVA) irradiation on gelatinase expression and secretion by NHEK was investigated. Irradiation of NHEK with non-toxic doses of UVA resulted in a dose-dependent downregulation of MMP-2 (gelatinase A) and MMP-9 (gelatinase B). A single dose of 30JUVA/cm(2) lowered MMP-2 activity to 26% and MMP-9 activity to 33% compared with mock-irradiated cells at 24h after irradiation. Downregulation of MMP-2 and MMP-9 steady-state mRNA levels was observed at 4h after UVA irradiation. The inhibitory effect of UVA on gelatinases was mediated by UVA-generated singlet oxygen (1O(2)). These findings suggest an inverse response to UVA irradiation in NHEK than in fibroblasts.  相似文献   

4.
Because beta-amyloid precursor protein (APP) has the abilities both to interact with extracellular matrix and to inhibit gelatinase A activity, this molecule is assumed to play a regulatory role in the gelatinase A-catalyzed degradation of extracellular matrix. To determine a region of APP essential for the inhibitory activity, we prepared various derivatives of APP. Functional analyses of proteolytic fragments of soluble APP (sAPP) and glutathione S-transferase fusion proteins, which contain various COOH-terminal parts of sAPP, showed that a site containing residues 579-601 of APP(770) is essential for the inhibitory activity. Moreover, a synthetic decapeptide containing the ISYGNDALMP sequence corresponding to residues 586-595 of APP(770) had a gelatinase A inhibitory activity slightly higher than that of sAPP. Studies of deletion of the NH(2)- and COOH-terminal residues and alanine replacement of internal residues of the decapeptide further revealed that Tyr(588), Asp(591), and Leu(593) of APP mainly stabilize the interaction between gelatinase A and the inhibitor. We also found that the residues of Ile(586), Met(594), and Pro(595) modestly contribute to the inhibitory activity. The APP-derived decapeptide efficiently inhibited the activity of gelatinase A (IC(50) = 30 nm), whereas its inhibitory activity toward membrane type 1 matrix metalloproteinase was much weaker (IC(50) = 2 microm). The decapeptide had poor inhibitory activity toward gelatinase B, matrilysin, and stromelysin (IC(50) > 10 microm). The APP-derived inhibitor formed a complex with active gelatinase A but not with progelatinase A, and the complex formation was prevented completely by a hydroxamate-based synthetic inhibitor. Therefore, the decapeptide region of APP is likely an active site-directed inhibitor that has high selectivity toward gelatinase A.  相似文献   

5.
Higashi S  Miyazaki K 《Biochemistry》2003,42(21):6514-6526
In various mammalian cell lines, beta-amyloid precursor protein (APP) is proteolytically processed to release its NH(2)-terminal extracellular domain as a soluble APP (sAPP) that contains the inhibitor domain against gelatinase A. To investigate roles of sAPP in the regulation of gelatinase A activity, we examined the correlation between the activation of progelatinase A and processing of APP. We found that stimulation of HT1080 fibrosarcoma cells with concanavalin A led to an activation of endogenous progelatinase A and to a novel processing of APP, which releases a COOH-terminally truncated form of sAPP (sAPPtrc) into the culture medium. Reverse zymographic analysis showed that sAPPtrc lacked an inhibitory activity against gelatinase A. Analyses of production of sAPPtrc in the presence of various metalloproteinase inhibitors showed that membrane type 1 matrix metalloproteinase (MT1-MMP), an activator of progelatinase A, is most likely responsible for the production of sAPPtrc. When the concanavalin A-stimulated HT1080 cells were cultured in the condition that inhibited MT1-MMP activity, sAPP and APP were associated with the extracellular matrix deposited by the cells, whereas these gelatinase A inhibitors in the matrix were displaced by sAPPtrc after exertion of MT1-MMP activity. Taken together, these data support a model in which MT1-MMP-catalyzed release of sAPPtrc leads to reduction of the extracellular matrix-associated gelatinase A inhibitor, sAPP, thus making it feasible for gelatinase A to exert proteolytic activity only near its activator, MT1-MMP.  相似文献   

6.
Matrix remodelling enzymes, the protease cascade and glycosylation.   总被引:6,自引:0,他引:6  
Glycosylation influences the specific activities of serine proteases including tissue-type plasminogen activator and plasmin which act together in a ternary complex with fibrin. Serine proteases and matrix metalloproteinases (MMPs), including gelatinase B, participate in a protease cascade to remodel the extracellular matrix. In addition to the recognition and targeting functions of carbohydrates and the fact that they confer protease resistance on glycoproteins, oligosaccharides may extend particular protein domains of matrix remodelling enzymes and fine-control their activities within the context of the extracellular matrix. For example, the sialic acids of gelatinase B influence the catalytic activity of this enzyme in a complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1).  相似文献   

7.
We have isolated a novel 75-kDa gelatinase from a chicken macrophage cell line, HD11. Biochemical and immunological characterization of the purified enzyme demonstrated that it is distinct from the chicken 72-kDa gelatinase A (MMP-2). The enzyme is capable of specific gelatin binding and rapid gelatin cleavage. Incubation with an organomercurial compound (p-aminophenylmercuric acetate) induces proteolytic processing and activation of this enzyme, and the resultant gelatinolytic activity is sensitive to both zinc chelators and tissue inhibitors of metalloproteinases. A full-length cDNA for the enzyme has been cloned, and sequence analysis demonstrated that the enzyme possesses the characteristic multidomain structure of an MMP gelatinase including a cysteine switch prodomain, three fibronectin type II repeats, a catalytic zinc binding region, and a hemopexin-like domain. The 75-kDa gelatinase is produced by phorbol ester-treated chicken bone marrow cells, monocytes, and polymorphonuclear leukocytes, cell types that charac- teristically produce the 92-kDa mammalian gelatinase B (MMP-9). The absence of a 90-110-kDa gelatinase in these cell types indicates that the 75-kDa gelatinase is likely the avian counterpart of gelatinase B. However, the protein is only 59% identical to human gelatinase B, whereas all previously cloned chicken MMP homologues are 75-90% identical to their human counterparts. In addition, the new 75-kDa chicken gelatinase lacks the type V collagen domain that is found in all mammalian gelatinase Bs. Furthermore, the secreted enzyme appears structurally distinct from known gelatinase Bs and the activated enzyme can cleave fibronectin, which is not a substrate for mammalian gelatinase B. Thus the results of this study indicate that a second MMP gelatinase exists in chickens, and although it is MMP-9/gelatinase B-like in its overall domain structure and expression pattern, it appears to be biochemically divergent from mammalian gelatinase B.  相似文献   

8.
We compared the association constants of tissue inhibitor of metalloproteinases (TIMP)-3 with various matrix metalloproteinases with those for TIMP-1 and TIMP-2 using a continuous assay. TIMP-3 behaved more like TIMP-2 than TIMP-1, showing rapid association with gelatinases A and B. Experiments with the N-terminal domain of gelatinase A, the isolated C-terminal domain, or an inactive progelatinase A mutant showed that the hemopexin domain of gelatinase A makes an important contribution to the interaction with TIMP-3. The exchange of portions of the gelatinase A hemopexin domain with that of stromelysin revealed that residues 568-631 of gelatinase A were required for rapid association with TIMP-3. The N-terminal domain of gelatinase B alone also showed slower association with TIMP-3, again implying significant C-domain interactions. The isolation of complexes between TIMP-3 and progelatinases A and B on gelatin-agarose demonstrated that TIMP-3 binds to both proenzymes. We analyzed the effect of various polyanions on the inhibitory activity of TIMP-3 in our soluble assay. The association rate was increased by dextran sulfate, heparin, and heparan sulfate, but not by dermatan sulfate or hyaluronic acid. Because TIMP-3 is sequestered in the extracellular matrix, the presence of certain heparan sulfate proteoglycans could enhance its inhibitory capacity.  相似文献   

9.
10.
The appearance of a high molecular weight gelatinolytic enzyme (230 kDa) correlated with cartilage collagen loss in chick embryonic tibias cultured with lipopolysaccharide. This 230 kDa enzyme was purified and its activity was measured on synthetic and natural substrates. The enzyme was activated by aminophenylmercuric acetate and inhibited by ethylenediaminetetraacetic acid, phenanthroline, marimastat or tissue inhibitors of metalloproteinases. Amino acid sequences of peptides derived from the purified enzyme showed identity with avian MMP-9. Digestion of the intact enzyme with chondroitinase decreased the size of the molecule to 80 kDa on SDS-PAGE. When chick embryonic tibia cultures were radiolabeled with (35)S-sulfate, the radiolabel co-purified with the 230 kDa gelatinase. Chondroitinase treated 230 kDa gelatinase also reacted with specific anti-chondroitin sulfate antibodies and FACE analysis revealed a predominance of chondroitin-4-sulfate. These results demonstrate this avian matrix metalloproteinase contained glycosaminoglycan chains. To our knowledge, this is the first report of a matrix metalloproteinase in a proteoglycan form.  相似文献   

11.
Alpha-lipoic acid (LA) is a disulphide-containing fatty acid that is absorbed from the diet and transported to tissues. Once it has been taken up by mammalian cells, LA is reduced to dihydrolipoic acid (DHLA), a vicinal dithiol, and rapidly effluxed into the extracellular milieu. We hypothesized that DHLA may be an effective inhibitor of human gelatinase B (GelB). Purified human GelB was incubated with 0 to 200 micromol/L DHLA, and residual enzyme activity was measured by HPLC using a fluorogenic substrate (matrix metalloproteinase substrate III). DHLA inhibited GelB in a dose-dependent fashion with an IC50 of 20 micromol/L. Oxidation of DHLA resulted in a loss of DHLA's capacity to inhibit GelB. The DHLA-mediated inhibition of GelB was independent of the zinc concentration in the reaction buffer. DHLA had no inhibitory effect on gelatinase A. Zymographs of activated neutrophil lysates demonstrated that higher concentrations of DHLA also prevent the activation of GelB proenzyme. Bronchoalveolar lavage fluid from mice fed a diet enriched with LA showed significantly increased GelB inhibitory capacity (p = 0.0002 vs. regular diet). We conclude that DHLA can modulate neutrophil-derived GelB activity through direct inhibition of enzyme activity and by preventing the activation of GelB proenzyme.  相似文献   

12.
Cardiovascular drugs inhibit MMP-9 activity from human THP-1 macrophages   总被引:6,自引:0,他引:6  
It is now recognized that atherosclerosis complications are related to the unstable character of the plaque rather than its volume. Vulnerable plaques often contain a large lipid core, a reduced content of smooth muscle cells, and accumulation of inflammatory cells. Colocalization of macrophages and active matrix metalloproteinases (MMPs) is likely relevant for atherosclerotic lesion disruption. Nevertheless, MMP activity and regulation by cardiovascular drugs remains poorly defined. In this study, we evaluated the effects of avasimibe, fluvastatin, and peroxisome proliferator-activated receptor (PPAR) ligands on 92-kDa gelatinase B (MMP-9) secretion by human THP-1 macrophages. THP-1 macrophages were treated with compounds for 48 h, and secreted MMP-9 protein was quantified by immunoassay. Avasimibe, fluvastatin, and PPARalpha agonists (fenofibric acid and Wy-14643) significantly reduced, in a concentration-dependent manner, MMP-9 protein (up to 67 +/- 5% for fenofibric acid). In these assays, the PPARgamma selective agonist rosiglitazone displayed a lower efficacy than other compounds. Enzymatic activity of MMP-9 was also decreased by all cardiovascular drugs tested. MMP-9 protein/activity inhibition by cardiovascular drugs was due, at least in part, to a decrease in MMP-9 mRNA. These results show that THP-1 macrophages could be an useful cellular model to investigate effects of compounds on plaque vulnerability through MMP-9 activity.  相似文献   

13.
Human endothelial gelatinases and angiogenesis   总被引:15,自引:0,他引:15  
Endothelial cell invasion is an essential event during angiogenesis (formation of new blood vessels). The process involves the degradation of the basement membrane and the underlying interstitium. The matrix metalloproteinase (MMP) family is considered to be primarily responsible for matrix degradation. Two members of the family, gelatinase A and B play an important role in angiogenesis. This review outlines recent findings on their regulation in human endothelial cells. Latent gelatinase B is secreted from endothelial cells. This enzyme can also accumulate in the cytosol as an active enzyme, free of TIMP-1. In contrast, latent gelatinase A is constitutively secreted from the cells. Unlike other MMPs, gelatinase A activation occurs on the cell membrane and is mediated by MT1-MMP. A number of physiological activators have recently been described. These include thrombin and activated protein C, both of which activate gelatinase A independent of the MT1-MMP pathway. These new findings may lead to therapeutic interventions for the treatment of angiogenic-dependent diseases such as cancer and arthritis.  相似文献   

14.
Expression of gelatinase B (matrix metalloprotease 9) in human placenta is developmentally regulated, presumably to fulfill a proteolytic function. Here we demonstrate that gelatinolytic activity in situ, in tissue sections of term placenta, is co-localized with gelatinase B. Judging by molecular mass, however, all the enzyme extracted from this tissue was found in a proform. To address this apparent incongruity, we examined the activity of gelatinase B bound to either gelatin- or type IV collagen-coated surfaces. Surprisingly, we found that upon binding, the purified proenzyme acquired activity against both the fluorogenic peptide (7-methoxycoumarin-4-yl)-acetic acid (MCA)-Pro-Leu-Gly-Leu-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl-Ala-Arg-NH(2) and gelatin substrates, whereas its propeptide remained intact. These results suggest that although activation of all known matrix metalloproteases in vitro is accomplished by proteolytic processing of the propeptide, other mechanisms, such as binding to a ligand or to a substrate, may lead to a disengagement of the propeptide from the active center of the enzyme, causing its activation.  相似文献   

15.

Background

Extracellular matrix (ECM) remodeling facilitates biomechanical signals in response to abnormal physiological conditions. This process is witnessed as one of the major effects of the stress imposed by catecholamines, such as epinephrine and norepinephrine (NE), on cardiac muscle cells. Matrix metalloproteinases (MMPs) are the key proteases involved in degradation of the ECM in heart.

Objectives

The present study focuses on studying the effect of curcumin on Gelatinase B (MMP-9), an ECM remodeling regulatory enzyme, in NE-induced cardiac stress. Curcumin, a bioactive polyphenol found in the spice turmeric, has been studied for its multi-fold beneficial properties. This study focuses on investigating the role of curcumin as a cardio-protectant.

Methods

H9c2 cardiomyocytes were subjected to NE and curcumin treatments to study the response in stress conditions. Effect on total collagen content was studied using Picrosirus red staining. Gelatinase B activity was assessed through Gel-Diffusion Assay and Zymographic techniques. RT-PCR, Western Blotting and Immunocytochemistry were performed to study effect on expression of gelatinase B. Further, the effect of curcumin on the localization of NF-κB, known to regulate gelatinase B, was also examined.

Results

Curcumin suppressed the increase in the total collagen content under hypertrophic stress and was found to inhibit the in-gel and in-situ gelatinolytic activity of gelatinase B. Moreover, it was found to suppress the mRNA and protein expression of gelatinase B.

Conclusions

The study provides an evidence for an overall inhibitory effect of curcumin on Gelatinase B in NE-induced hypertrophic stress in H9c2 cardiomyocytes which may contribute in the prevention of ECM remodeling.  相似文献   

16.
Digestion of type V collagen by the gelatinases is an important step in tumor cell metastasis because this collagen maintains the integrity of the extracellular matrix that must be breached during this pathological process. However, the structural elements that provide the gelatinases with this unique proteolytic activity among matrix metalloproteinases had not been thoroughly defined. To identify these elements, we examined the substrate specificity of chimeric enzymes containing domains of gelatinase B and fibroblast collagenase. We have found that the addition of the fibronectin-like domain of gelatinase B to fibroblast collagenase is sufficient to endow the enzyme with the ability to cleave type V collagen. In addition, the substitution of the catalytic zinc-binding active site region of fibroblast collagenase with that of gelatinase B increased the catalytic efficiency of the enzyme 3- to 4-fold. This observation led to the identification of amino acid residues, Leu(397), Ala(406), Asp(410), and Pro(415), in this region of gelatinase B that are important for its efficient catalysis as determined by substituting these amino acids with the corresponding residues from fibroblast collagenase. Leu(397) and Ala(406) are important for the general proteolytic activity of the enzyme, whereas Asp(410) and Pro(415) specifically enhance its ability to cleave type V collagen and gelatin, respectively. These data provide fundamental information about the structural elements that distinguish the gelatinases from other matrix metalloproteinases in terms of substrate specificity and catalytic efficiency.  相似文献   

17.
This review focuses on matrix metalloproteinases (MMPs)-2 (gelatinase A) and -9 (gelatinase B), both of which are cancer-associated, secreted, zinc-dependent endopeptidases. Gelatinases cleave many different targets (extracellular matrix, cytokines, growth factors, chemokines and cytokine/growth factor receptors) that in turn regulate key signaling pathways in cell growth, migration, invasion, inflammation and angiogenesis. Interactions with cell surface integral membrane proteins (CD44, αVβ/αβ1/αβ2 integrins and Ku protein) can occur through the gelatinases' active site or hemopexin-like C-terminal domain. This review evaluates the recent literature on the non-enzymatic, signal transduction roles of surface-bound gelatinases and their subsequent effects on cell survival, migration and angiogenesis. Gelatinases have long been drug targets. The current status of gelatinase inhibitors as anticancer agents and their failure in the clinic is discussed in light of these new data on the gelatinases' roles as cell surface transducers — data that may lead to the design and development of novel, gelatinase-targeting inhibitors.  相似文献   

18.
The secretion of matrix-degrading proteinases and protein components involved in the production of cytotoxic metabolites is an important step in the sequence of defense reactions executed by polymorphonuclear leukocytes (PMNL) in response to stimulation. In the present report, we have analyzed degranulation of PMNL stimulated either with soluble synthetic peptides fLeu-Phe (fMet, formylmethionyl), or fAhx-Leu-Phe-Ahx-Tyr-Phe (Ahx, aminohexyl) which trigger chemotaxis and degranulation, or with opsonized zymosan which induces phagocytosis. The release of elastase, myeloperoxidase and lactoferrin-containing granules was not at all or only slightly (less than 6%) induced either by fAhx-Leu-Phe-Ahx-Tyr-Leu or by zymosan particles. In contrast, type-I collagenase and gelatinase were secreted in significant amounts after treatment with these agents. The disruption of microfilaments by cytochalasin B and subsequent stimulation of PMNL with the formyl-peptide led to the secretion of elastase, myeloperoxidase and lactoferrin, and enhanced the release of gelatinase. Disruption of microtubules by incubation with colcemid resulted in inhibition of fAhx-Leu-Phe-Ahx-Thyr-Leu and fAhx-Leu-Phe-Ahx-Tyr-Leu/cytochalasin-B-induced granule release. Furthermore, we found different patterns of enzyme distribution after fractionation by centrifugation: most (greater than 90%) type-I collagenase and gelatinase was measured in the supernatant whereas 60-90% of elastase, myeloperoxidase and lactoferrin had partitioned into the cytoskeleton-containing pellet. Our results suggest that the two main types of secretory vesicles identified in PMNL (specific and azurophilic granules) consist of subpopulations. The differential association of the various types of granules with cytoskeletal elements may serve to control their sequential discharge.  相似文献   

19.
On chemokine stimulation, leucocytes produce and secrete proteolytic enzymes for innate immune defence mechanisms. Some of these proteases modify the biological activity of the chemokines. For instance, neutrophils secrete gelatinase B (matrix metalloproteinase-9, MMP-9) and neutrophil collagenase (MMP-8) after stimulation with interleukin-8/CXCL8 (IL-8). Gelatinase B cleaves and potentiates IL-8, generating a positive feedback. Here, we extend these findings and compare the processing of the CXC chemokines human and mouse granulocyte chemotactic protein-2/CXCL6 (GCP-2) and the closely related human epithelial-cell derived neutrophil activating peptide-78/CXCL5 (ENA-78) with that of human IL-8. Human GCP-2 and ENA-78 are cleaved by gelatinase B at similar rates to IL-8. In addition, GCP-2 is cleaved by neutrophil collagenase, but at a lower rate. The cleavage of GCP-2 is exclusively N-terminal and does not result in any change in biological activity. In contrast, ENA-78 is cleaved by gelatinase B at eight positions at various rates, finally generating inactive fragments. Physiologically, sequential cleavage of ENA-78 may result in early potentiation and later in inactivation of the chemokine. Remarkably, in the mouse, which lacks IL-8 which is replaced by GCP-2/LIX as the most potent neutrophil activating chemokine, N-terminal clipping and twofold potentiation by gelatinase B was also observed. In addition to the similarities in the potentiation of IL-8 in humans and GCP-2 in mice, the conversion of mouse GCP-2/LIX by mouse gelatinase B is the fastest for any combination of chemokines and MMPs so far reported. This rapid conversion was also performed by crude neutrophil granule secretion under physiological conditions, extending the relevance of this proteolytic cleavage to the in vivo situation.  相似文献   

20.
Normal B lymphocytes as well as malignant B cells extravasate from blood circulation during physiological and pathological processes and require matrix metalloproteinases (MMPs) to facilitate trafficking through the subendothelial basal lamina and the extracellular matrix. We have previously shown that Epstein-Barr virus (EBV)-immortalized B lymphocytes constitutively synthesized low levels of MMP-9 and huge amounts of its preferential inhibitor, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). In the present study, TIMP-1 phenotypic expression was extensively investigated in response to various mediators including interleukins, chemokines, growth factors and tumor promotor, and was compared to MMP-9 synthesis. Results showed a roughly constitutive TIMP-1 expression opposed to an inducible MMP-9 synthesis. Nevertheless, further analysis of TIMP-1 synthesis showed the existence of regulation mechanisms: modulation of intracellular Ca(2+) concentration as well as cation ionophore monensin were demonstrated to influence TIMP-1 production and secretion. The precise pathways implicated in these regulation mechanisms are currently under survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号