首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new superoxide dismutase (SOD) gene from the thermophilic fungus Chaetomium thermophilum (Ctsod) was cloned and expressed in Pichia pastoris and its gene product was characterized. The specific activity of the purified CtSOD was 2,170 U/mg protein. The enzyme was inactivated by KCN and H2O2 but not by NaN3, confirming that it belonged to the type of Cu, ZnSOD. The amino acid residues involved in coordinating copper and zinc were conserved. The recombinant CtSOD exhibited optimum activity at pH 6.5 and 60°C. The enzyme retained 65% of the maximum activity at 70°C for 60 min and the half-life was 22 and 7 min at 80 and 90°C, respectively. The recombinant yeast exhibited higher stress resistance than the control yeast cells to salt and superoxide-generating agents, such as paraquat and menadione.  相似文献   

2.
Random mutagenesis was used to create a library of chimeric dextranase (dex1) genes. A plate-screening protocol was developed with improved thermostability as a selection criterion. The mutant library was screened for active dextranase variants by observing clearing zones on dextran-blue agar plates at 50°C after exposure to 68°C for 2 h, a temperature regime at which wild-type activity was abolished. A number of potentially improved variants were identified by this strategy, five of which were further characterised. DNA sequencing revealed ten nucleotide substitutions, ranging from one to four per variant. Thermal inactivation studies showed reduced (2.9-fold) thermostability for one variant and similar thermostability for a second variant, but confirmed improved thermostability for three mutants with 2.3- (28.9 min) to 6.9-fold (86.6 min) increases in half-lives at 62°C compared to that of the wild-type enzyme (12.6 min). Using a 10-min assay, apparent temperature optima of the variants were similar to that of the wild type (T opt 60°C). However, one of these variants had increased enzyme activity. Therefore, the first-generation dextranase mutant pool obtained in this study has sufficient molecular diversity for further improvements in both thermostability and activity through recombination (gene shuffling).  相似文献   

3.
A novel ice-nucleating bacterium, KUIN-4 was isolated from a cherry leaf, which was unsusceptible to frost injury. Strain KUIN-4 was identified as Pseudomonas sp. from its characteristics and taxonomies; the optimum temperature and pH for its growth were 18°C and 4.5, respectively. When strain KUIN-4 was cultured aerobically in CYE medium (pH 4.5) for 48 h at 18°C, the ice-nucleating activities of strain KUIN-4 cells and culture broth (extracellular ice-nucleating matter) after removal of the cell were obtained. The ice-nucleating temperature, T50 (°C), was indicated to be –2.8°C in cell suspensions (4.25 x 107 cell/ml) of strain KUIN-4. Also, it had become apparent that the ice-nucleating activity involved class A, B, and C structures as judged by its freezing difference spectrum in D2O versus H2O. The ice-nucleating activity of this strain as well as other ice-nucleating bacteria was significantly decreased by heat treatment (40°C, 30 min). The ice-nucleating activity from this strain had unique features, which was stable under acidic conditions (pH 3.5–5.0) and was weakly inhibited by denaturants and protein-modifying reagents.  相似文献   

4.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

5.
A superoxide dismutase (SOD) gene of Thermoascus aurantiacus var. levisporus, a thermophilic fungus, was cloned, sequenced, and expressed in Pichia pastoris and its gene product was characterized. The coding sequence predicted a 231 residues protein with a unique 35 amino acids extension at the N-terminus indicating a mitochondrial-targeting sequence. The content of Mn was 2.46 μg/mg of protein and Fe was not detected in the purified enzyme. The enzyme was found to be inhibited by NaN3, but not by KCN or H2O2. These results suggested that the SOD in Thermoascus aurantiacus var. levisporus was the manganese superoxide dismutase type. In comparison with other MnSODs, all manganese-binding sites were also conserved in the sequence (H88, H136, D222, H226). The molecular mass of a single band of the enzyme was estimated to be 21.7 kDa. The protein was expressed in tetramer form with molecular weight of 68.0 kDa. The activity of purified protein was 2,324 U/mg. The optimum temperature of the enzyme was 55°C and it exhibited maximal activity at pH 7.5. The enzyme was thermostable at 50 and 60°C and the half-life at 80°C was approximately 40 min.  相似文献   

6.
The effects of temperature, water activity (aw), incubation time, and their combinations on radial growth and ochratoxin A (OTA) production of/by eight Aspergillus niger aggregate strains (six A. tubingensis and two A. niger) and four A. carbonarius isolated from Moroccan grapes were studied. Optimal conditions for the growth of most studied strains were shown to be at 25°C and 0.95 aw. No growth was observed at 10°C regardless of the water activity and isolates. The optimal temperature for OTA production was in the range of 25°C∼30°C for A. carbonarius and 30°C∼37°C for A. niger aggregate. The optimal aw for toxin production was 0.95∼0.99 for A. carbonarius and 0.90∼0.95 for A. niger aggregate. Mean OTA concentration produced by all the isolates of A. niger aggregate tested at all sampling times shows that maximum amount of OTA (0.24 μg/g) was produced at 37°C and 0.90 aw. However, for A. carbonarius, mean maximum amounts of OTA (0.22 μg/g) were observed at 25°C and 0.99 aw. Analysis of variance showed that the effects of all single factors (aw, isolate, temperature and incubation time) and their interactions on growth and OTA production were highly significant.  相似文献   

7.
The rate of cyclic AMP formation by rabbit heart membrane particles decreased at assay temperatures greater than 30 °C. Adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity (assayed at 24 °C) decreased exponentially with time of preincubation at 30 or 37 °C, providing evidence for the instability of this enzyme. The half-life, t1/2, of the enzyme at 37 °C was 9.9 min in the absence and 4.4 min in the presence of MgCl2. The activity was most labile in the presence of 50 m m Mg2+ and 1 m m ATP, having t1/2 = 1.3min. Prior incubation of membranes with the GTP analog, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], 0.1 m m, for 30 min at 37 °C produced maximal activation of adenylate cyclase; the rate of activation was temperature dependent and was increased in the presence of isoproterenol. The Gpp(NH)p-activated enzyme had increased thermal stability, t1/2 = 170 min, and was also markedly more stable in the presence of Mg-ATP, t1/2 = 72min, than nonactivated enzyme. Preactivation with F? (30 min at 24 °C) also stabilized the activity; t1/2 > 70 min in the absence or presence of Mg-ATP. The Mg2+ concentration required for maximal activity was reduced from approximately 60 m m for nonactivated enzyme to 10 m m for the Gpp(NH)p- and F?activated enzyme.  相似文献   

8.
Detached Nicotiana rustica leaves were exposed for 2 minutes to temperatures in the range 36° to 51°C. Above 45°C, 14CO2 fixation was reduced by half as compared with controls. The fall in 14CO2 fixation continued for 2 1/2 h. Recovery was completed 45 h after the treatment. Above 45°C there was an increase in the labeled cationic and anionic fractions and a decrease in the neutral fractions, both increase and decrease being associated with the impaired CO2 fixation. However, these changes in products were also demonstrated when leaves were exposed to the high temperature after labeling.  相似文献   

9.
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K m and V max for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe2+, Fe3+, and Al3+. When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).  相似文献   

10.
Leaves of the two new chlorophyllb-less rice mutants VG28-1, VG30-5 and the wild type rice cv. Zhonghua 11 were subjected to temperatures 28, 36, 40, 44 and 48°C in the dark for 30 min or gradually elevated temperature from 30°C to 80°C at 0.5°C/min. The thermostability of photosynthetic apparatus was estimated by the changes in chlorophyll fluorescence parameters, photosynthetic rate and pigment content, chloroplast ultrastructure and tissue location of H2O2 accumulation. There were different patterns of Fo-temperature curves between the Chlb-less mutants and the wild type plant, and the temperature of Fo rising threshold was shifted 3°C lower in the Chlb-less mutants (48°C) than in the wild type (51°C). At temperature up to about 45°C, chloroplasts were swollen and thylakoid grana became misty accompanied with the complete loss of photosynthetic oxygen evolution in the two Chlb-less mutants, but chloroplast ultrastructure in the wild type showed no obvious alteration. After 55°C exposure, the disordered thylakoid and significant H2O2 accumulation in leaves were found in the two Chlb-less mutants, whereas in the wild type plant, less H2O2 was accumulated and the swollen thylakoid still maintained a certain extent of stacking. A large extent of the changes in qP, NPQ and Fv/Fm was consistent with the Pn decreasing rate in the Chlb-less mutants during high temperature treatment as compared with the wild type. The results indicated that the Chlb-less mutants showed a tendency for higher thermosensitivity, and loss of Chlb in LHC II could lead to less thermostability of PSII structure and function. Heat damage to photosynthetic apparatus might be partially attributed to the internal oxidative stress produced at severely high temperature.  相似文献   

11.
We investigated the influence of root zone temperature (RZT) and the aerial application of paraquat on stress defence mechanisms of Trichosanthes cucumerina L. To achieve this objective, T. cucumerina cv Green was grown with roots at 25 and 30°C root zone temperature and maintained at 20 ± 1°C air temperature in a growth chamber. These RZT and air temperature had earlier been shown to favor growth and fruit production in T. cucumerina. Plants at each RZT were subjected to paraquat treatment (+P) and without paraquat treatment (−P). Paraquat (0.2 mmol/L) was applied as aerial spray. Results showed that the individual main effects of RZT and paraquat treatments significantly affected the chlorophyll fluorescence and gas exchange parameters, while the interaction of both treatments had no significant effect. Results showed that the total phenolics and ascorbic acid contents of T. cucumerina at 30°C were significantly higher than at 25°C. The T. cucumerina plants in +P treatment recorded significantly lower maximum photochemical efficiency (F v/F m), net photosynthesis (A), transpiration rate (E), intercellular CO2 concentration (C i) and stomatal conductance (g 1) compared to untreated plants. Also, plants raised at 30°C recorded significantly higher F v/F m, A, E, C i and g 1 compared to plants raised at 25°C. Plants that were sampled at 48 h after paraquat treatment recorded a higher degree of oxidative damage compared to those sampled at 24 h after treatment. We showed that the degree of damage suffered by T. cucumerina, when treated with paraquat either at 25 or 30°C RZT was similar at 48 h after treatment. We concluded that either at 25 or 30°C, exposure of T. cucumerina to paraquat would impose the same degree of oxidative damage.  相似文献   

12.
A gene encoding extracellular lipase was cloned and characterized from metagenomic DNA extracted from hot spring soil. The recombinant gene was expressed in E. coli and expressed protein was purified to homogeneity using hydrophobic interactions chromatography. The mature polypeptide consists of 388 amino acids with apparent molecular weight of 43 kDa. The enzyme displayed maximum activity at 50°C and pH 9.0. It showed thermal stability up to 40°C without any loss of enzyme activity. Nearly 80% enzyme activity was retained at 50°C even after incubation for 75 min. However above 50°C the enzyme displayed thermal instability. The half life of the enzyme was determined to be 5 min at 60°C. Interestingly the CD spectroscopic study carried out in the temperature range of 25–95°C revealed distortion in solution structure above 35°C. However the intrinsic tryptophan fluorescence spectroscopic study revealed that even with the loss of secondary structure at 35°C and above the tertiary structure was retained. With p-nitrophenyl laurate as a substrate, the enzyme exhibited a K m , V max and K cat of 0.73 ± 0.18 μM, 239 ± 16 μmol/ml/min and 569 s−1 respectively. Enzyme activity was strongly inhibited by CuCl2, HgCl2 and DEPC but not by PMSF, eserine and SDS. The protein retained significant activity (~70%) with Triton X-100. The enzyme displayed 100% activity in presence of 30% n-Hexane and acetone.  相似文献   

13.
Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling‐sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co‐limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP‐ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦPCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling.  相似文献   

14.
For the production of extracellular lipase by Alcaligenes species No. 679, NaNO3, polyoxyethylene alkyl ether, Fe++, sodium citrate and fructose were found to be effective. The enzyme was prepared by acetone precipitation from the filtrate of the culture broth of this strain. The enzyme was most active at pH 9.0 and 50°C, while 35% of its activity was lost on heat treatment at 60°C for 10 min. Sodium salts of bile acids stimulated the enzyme activity. This lipase could hydrolyse natural fats and oils as well as olive oil. During the hydrolysis of olive oil, monoglyceride was found to accumulate up to 70 mol percent. This lipase possesses special properties similar to those of pancreatic lipase as shown in the comparative experiments.  相似文献   

15.
The biochemical properties of the alkaline phosphatases (AlPs) produced by Rhizopus microsporus are described. High enzymic levels were produced within 1–2 d in agitated cultures with 1 % wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3×, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn2+, Na+ and Mg2+ stimulated the activity, while Al3+ and Zn2+ activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 °C and pH 8.0, respectively. The enzymes were stable at 50 °C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K m 0.28 and 0.22 mmol/L, with υ lim 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.  相似文献   

16.
Recombinant exoinulinase was partially purified from the culture supernatant ofS. cerevisiae by (NH4)2SO4 precipitation and PEG treatment. The purified inulinase was immobilized onto Amino-cellulofine with glutaraldehyde as a cross-linking agent. Immobilization yield based on the enzyme activity was about 15%. Optimal pH and temperature of immobilized enzyme were found to be 5.0 and 60°C, respectively. The enzyme activity was stably maintained in the pH ranges of 4.5 to 6.0 at 60°C. 100% of enzyme activity was observed even after incubation for 24 hr at 60°C. In the operation of a packed-bed reactor containing 412 U inulinase, dahalia inulin of 7.5%(w/v) concentration was completely hydrolyzed at flow rate of 2.0 mL/min at 60°C, resulting in a volumetric productivity of 693 g-reducing sugars/L/h. Under the reaction conditions of 1.0 mL/min flow rate with 2.5% inulin at 60°C, the reactor was successfully operated over 30 days without loss of inulinase activity.  相似文献   

17.
Protease inhibitors present in seeds of legumes possess strong inhibitory activity against trypsin and confer resistance against pests. In the present investigation, trypsin inhibitor activity was found in the seed flour extracts of all the eight selected varieties of mungbean under study which was further confirmed by dot blot analysis. All the varieties showed inhibitory activity in vitro against the gut protease of Helicoverpa armigera (HGP). Trypsin inhibitor was purified from mungbean seeds to near homogeneity with 58.1-fold and 22.8% recovery using heat denaturation, NH4(SO4)2 fractionation, ion-exchange chromatography on DEAE-Sephadex A-25 and gel filtration through Sephadex G-75. The molecular mass of the inhibitor was 47 kDa as determined by gel filtration and SDS-PAGE. The inhibitor retained 90% or more activity between pH 4 and 10, however, it was nearly inactive at extreme pH values. The inhibitor was stable up to 80°C but thereafter, the activity decreased gradually retaining nearly 30% of activity when heated at 100°C for 20 min. The inhibitor activity was undetectable at 121°C. Insect bioassay experiment using purified mungbean trypsin inhibitor showed a marked decline in survival (%) of larvae with increase in inhibitor concentration. The larval growth was also extended by the trypsin inhibitor. This study signifies the insecticidal potential of mungbean trypsin inhibitor which might be exploited for raising transgenic plants.  相似文献   

18.
A gene encoding an intracellular glucoamylase was identified in the genome of the extreme thermoacidophilic Archaeon Thermoplasma acidophilum. The gene taGA, consisting of 1,911 bp, was cloned and successfully expressed in Escherichia coli. The recombinant protein was purified 22-fold to homogeneity using heat treatment, anion-exchange chromatography, and gel filtration. Detailed analysis shows that the glucoamylase, with a molecular weight of 66 kDa per subunit, is a homodimer in its active state. Amylolytic activity was measured over a wide range of temperature (40–90°C) and pH (pH 3.5–7) and was maximal at 75°C and at acidic condition (pH 5). The recombinant archaeal glucoamylase uses a variety of polysaccharides as substrate, including glycogen and amylose. Maximal activity was measured towards amylopectin with a specific activity of 4.2 U/mg and increased almost threefold in the presence of manganese. Calcium ions have a pronounced effect on enzyme stability; in the presence of 5 mM CaCl2, the half-life increased from 15 min to 2 h at 80°C.  相似文献   

19.
Protease secreted into the culture medium by alkalophilic Thermoactinomyces sp. HS682 was purified to an electrophoretically homogeneous state through only two chromatograhies using Butyl-Toyopearl 650M and SP-Toyopearl 650S columns. The purified enzyme has an apparent relative molecular mass of 25, 000 according to gel filtration on a Sephadex G-75 column and SDS-PAGE and an isoelectric point above 11.0.

Its proteolytic activity was inhibited by active-site inhibitors of serine protease, DFP and PMSF, and metal ions, Cu2+ and Hg2+. The enzyme was stable toward some detergents, sodium perborate, sodium triphosphate, sodium-n-dodecylbenzenesulfonate, and sodium dodecyl sulfate, at a concentration of 0.1% and pH 11.5 and 37°C for 60 min. The optimum pH was pH 11.5–13.0 at 37°C and the optimum temperature was 70°C at pH 11.5. Calcium divalent cation raised the pH and heat stabilities of the enzyme. In the presence of 5 mM CaCl2, it showed maximum proteolytic activity at 80°C and stability from pH 4–12.5 at 60°C and below 75°C at pH 11.5. The stabilization by Ca2+ was observed in secondary conformation deduced from the circular dichroic spectrum of the enzyme. The protease hydrolyzed the ester bond of benzoyl leucine ester well. The amino acid terminal sequence of the enzyme showed high homology with those of Microbiol serine protease, although alanine of the NH2-terminal amino acid was deleted.  相似文献   

20.
The cultural conditions for the production of thermostable lipase by a thermophilic fungus Humicola lanuginosa S-38 were investigated. The optimal cultural conditions to obtain the maximum yield of thermostable lipase with a 600-liter stainless steel fermentor were as follows: optimal medium- 2.0% soluble starch, 5.0% corn steep liquor, 0.2% K2HPO4, 0.1% MgSO4·7H2O, 0.5% CaCO3, 0.5% soybean oil, 0.005% deforming agent (Adecanol LG-109); optimal fermentation conditions- temperature 45°C; rate of agitation 300 rpm; initial pH 7.0; rate of aeration 1/1 volume per volume of medium per minute. The optimal pH of the crude lipase preparation for the hydrolysis of the polyvinyl alcohol-emulsified olive oil was 8.0 and the optimal temperature was 60°C. It retained 100% of activity with the heat treatment at 60°C for 2 hr, but at 70°C for 20 min only 35% activity retained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号