首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Net photosynthetic CO2 uptake (P N ) and transpiration (E) rates through adaxial and abaxial leaf surfaces were measured gasometrically on the area of maize leaf blades of different insertion levels in the phase of male florescence and in the phase of spadices development. The distribution pattern of gas exchange on the area of all measured leaf blades found in the phase of male florescence (significantly lower value in the basal parts) was changed in the phase of spadices development: PN andE of abaxial surfaces of older leaves,i.e. 9th, 10th (under which the spadices were growing) and 11th, rapidly increased in the basal parts in comparison with the middle ones and positively influenced the gas exchange of the whole leaves. It appears that PN may be maintained or increased in the older leaves in the phase of spadices development to prevent shortage of photosynthates.  相似文献   

2.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

3.
Direct sowing with non-woven fabric mulch is the new organic rice cultivation system. We studied the effect of topdressing on individual leaf photosynthesis at different position and grain yield in rice plants cultivated by this system. Leaf photosynthetic rate at the different leaf position per plant (P N-LP) of the third and fourth to lower leaves was higher when the topdressing amount was increased. Without topdressing or in no-fertilizers plots, the P N-LP values of lower leaves were very low. The leaf photosynthetic rate per unit leaf area (P N-LA) decreased gradually as the leaf position became lower. Again, the P N-LA values of the top-dressed plots at the lower leaves were higher than that of plots without topdressing or without fertilizers. The lower leaves maintained a higher P N because of a higher rate of nitrogen accumulation due to topdressing. The higher rate of photosynthesis in these leaves resulted in better root activity, which contributed to a better ripening percentage and ultimately higher rice grain yield.  相似文献   

4.
Kitao  M.  Lei  T.T.  Koike  T. 《Photosynthetica》1999,36(1-2):31-40
The effects of four manganese (Mn) concentrations (1, 10, 50, and 100 g m-3 = Mn1, Mn10, Mn50, Mn100) in solution culture on growth variables were studied for seedlings of five deciduous broad-leaved trees with different successional characteristics and shoot development patterns in northern Japan. The five species were: Betula ermanii, Betula platyphylla var. japonica, and Alnus hirsuta (early-successional species with continuous leaf development), Ulmus davidiana var. japonica (mid-successional species with flush and continuous leaf development), and Acer mono (late-successional species with a flush type leaf development). In plants grown in the Mn environment for about 45 d, relative growth rate (RGR) decreased with increasing Mn supply. Between the 1 and 100 g(Mn) m-3, RGR decreased by 20 % for B. ermanii and B. platyphylla, by 40 % for A. hirsuta and A. mono, and by 80 % for U. davidiana. Specific leaf area (SLA) and leaf mass ratio (LMR) of all species were little affected by high Mn supply. In U. davidiana, however, there was a 67 % decrease in LMR in Mn100 plants. Leaf area ratio (LAR) was higher in early-successional species than in mid- and late-successional ones but differed little among Mn treatments within species, except for U. davidiana where LAR declined substantially with increased Mn supply. While LAR, which represents the relative size of assimilatory apparatus, was little affected, net photosynthetic rate (PN) saturated with radiant energy decreased with increasing Mn supply in all species. Thus PN was adversely affected by high accumulation of Mn in leaves, which resulted in an overall reduction in biomass production. However, the proportional allocation of photosynthates to the assimilatory apparatus was not affected by different Mn toxicity in hardwood tree seedlings. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

5.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

6.
Upland cotton (Gossypium hirsutum L.) can move leaves to track the sun throughout the day, so-called leaf diaheliotropic movement. This paper reports an experimental test of the hypothesis that leaf diaheliotropic movement in upland cotton can enhance carbon assimilation and not increase the risk of stress from high energy load. In this experiment, cotton leaves were divided into two groups: one was that leaves could track the sun freely; another was that leaves were retained to the horizontal position. The diaheliotropic leaves recorded higher incident irradiance than the restrained ones, especially in the morning and late afternoon. Compared with restrained leaves, diaheliotropic leaves were generally warmer throughout the day. As expected, diaheliotropic leaves had significantly higher diurnal time courses of net photosynthetic rate (P N) than restrained leaves, except during 14:00–18:00 of the local time. Higher instantaneous water-use efficiency (WUE) was observed in diaheliotropic leaves in the early morning and late afternoon than in the restrained leaves. During the given day, diaheliotropic and restrained leaves had similar diurnal time courses of recovery of maximal quantum yield of PSII photochemistry (Fv/Fm). Diaheliotropic leaves recorded lower or similar photochemical quenching coefficient (qp) than restrained leaves did throughout the day. These results suggest that cotton leaf diaheliotropic movement can improve carbon gain and water use efficiency and not intensify photoinhibition.  相似文献   

7.
Tang  Min  Yu  Fei-Hai  Zhang  Shu-Min  Niu  Shu-Li  Jin  Xiao-Bai 《Photosynthetica》2004,42(2):237-242
We studied the responses of gas exchange, leaf morphology, and growth to irradiance in Taihangia rupestris, a naturally rare herb inhabiting only vertical cliff faces. In low irradiance (LI, 10 % of full sun) T. rupestris had lower net photosynthetic rate (P N) and produced much less leaves, total leaf area, and biomass than in high (HI, full sun) or medium irradiance (MI, 50 % of full sun). P N of T. rupestris was higher in HI than in MI on August 8, but lower in HI than in MI on September 22. T. rupestris had shorter petioles and lower leaf area ratio, and produced more but smaller and thicker leaves in HI than in MI. In HI the fast production of new leaves may guarantee T. rupestris to maintain higher P N at the whole plant level and thus accumulate more biomass at harvest, although the single-leaf P N may become lower as found on September 22. Hence T. rupestris possesses a latent capacity to acclimate and adapt to full sun. Irradiance, therefore, may not be a responsible factor for the restricted distribution of T. rupestris on vertical cliffs.  相似文献   

8.
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost–benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar 15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.  相似文献   

9.
Xu  Hui-Lian  Gauthier  L.  Desjardins  Y.  Gosselin  A. 《Photosynthetica》1997,33(1):113-123
Gross photosynthetic capacity (P G ) of greenhouse-grown tomato plants (Lycopersicon esculentum Mill.) decreased as the leaf aged. The P G of the 10th, 15th and 18th leaves from the top was only 76, 37, and 18 % of P G of the 5th leaf, respectively. Quantum yield (Y Q ) and dark respiration rate (R D ) were also lower in older leaves than in the younger ones. Net photosynthetic rate (P G ) was apparent in young fruits (about 10 g FM) or young petioles but no P N was found in large fruits (40 g or more FM) and stems because of high R D . Both P G and R D were lower in older fruits and petioles or in lower parts of the stem compared to the younger ones or upper parts of stem. A sharp decrease in chlorophyll (Chl) content was only measured in the senescing 18th leaf. The Chl content in petioles, stems and fruits was proportional to P G . Decreases in P G of older leaves were attributed to decreases in content rather than activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) since soluble protein content was lower in older leaves than in the younger ones but the specific activity (activity per unit of protein) of RuBPCO was not so. The estimated values of P N of the 10th, 15th and 18th leaves inside the canopy were only 50, 21, and 7 % of that in the 5th leaf. Therefore, leaves below the 18th can be removed in order to ensure a good air circulation and prevent diseases. The significance of photosynthesis in fruit, stem and petioles is not negligible because photosynthesis re-fixes the respired CO2. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

10.
Proietti  P.  Famiani  F. 《Photosynthetica》2002,40(2):171-176
Diurnal and seasonal changes in photosynthetic characteristics, leaf area dry mass (ADM), and reducing sugar and total chlorophyll (Chl) contents of leaves of Frantoio, Leccino, and Maurino olive cultivars were investigated in Central Italy. Leaf net photosynthetic rate (P N) per unit leaf area changed during the growing season and during the day, but the cultivar did not significantly influence the changes. In both young and one-year-old leaves the highest P N values were observed in October, while the lowest values were recorded in August and December; during the day the highest P N values were generally found in the morning. The pattern of photosynthetic response to photosynthetic photon flux density (PPFD) of leaves was similar in the three genotypes. Sub-stomatal CO2 concentration (C I) tended to increase when P N decreased. The increase in C I was accompanied by a stomatal conductance to water vapor (g S) decrease. In general, P N and dark respiration rate (R D) were correlated. Transpiration rate (E), with no differences between the cultivars, increased from April to July, decreased greatly in August, then increased in October and finally decreased again in December. Leaf water content increased from April to June, remained high until mid July, decreased significantly in August, remaining constant until December with no differences associated with the cultivar. In both young and one-year-old leaves, the leaf water content per unit leaf area was slightly greater in Frantoio than in the other two cultivars. The one-year-old leaves had a higher Chl content than the young ones. The cultivar did not substantially influence the leaf reducing sugar content which decreased from April to August, when it reached the lowest level, then increased rapidly until October. During the day the reducing sugar content did not change significantly. The leaf ADM was slightly higher in Frantoio than in the other cultivars and one-year-old leaves had higher values than the young ones. Leaf ADM decreased from April to June and then tended to increase until December. During the day there were no substantial variations.  相似文献   

11.
He  Ping  Osaki  Mitsuru  Takebe  Masako  Shinano  Takuro 《Photosynthetica》2003,41(3):399-405
A field experiment was conducted to investigate the carbon (C) and nitrogen (N) balance in relation to grain formation and leaf senescence in two different senescent types of maize (Zea mays L.), one stay-green (cv. P3845) and one earlier senescent (cv. Hokkou 55). In comparison with Hokkou 55, P3845 had a higher N concentration (Nc) in the leaves and a higher specific N absorption rate by roots (SARN), which indicated that a large amount of N was supplied to the leaves from the roots during maturation. This resulted in a higher photosynthetic rate, which supports saccharide distribution to roots. Thus, stay-green plants maintained a more balanced C and N metabolism between shoots and roots. Moreover, the coefficients of the relationship between the relative growth rate (RGR) and Nc, and between the photon-saturated photo-synthetic rate (P sat) and Nc were lower in P3845. The P sat per unit Nc in leaves was lower in the stay-green cultivars, which indicated that high yield was attained by longer green area duration and not by a high P sat per unit Nc in the leaf. Consequently, a high Psat caused a high leaf senescence rate because C and N compounds will translocate actively from the leaves.  相似文献   

12.
Photosynthetic rate (PN) and chlorophyll (Chl) fluorescence induction of source leaves in response to a low sink demand created by girdling the branch (GB) between the root-tuber-system and the leaves were studied in Dahlia pinnata L. cv. Rigolet during the stage of rapid tuber growth in the greenhouse. GB resulted in significantly lower values of PN, stomatal conductance (gs), and transpiration rate (E), but in higher leaf temperature (Tl) compared with those of controls. With exception of maximum quantum yield of photosystem 2 (PS 2) photochemistry (Fv/Fm) and maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PS 2 (Fv/F0), no significant differences were observed in Chl fluorescence parameters between girdled and control leaves on days 1 and 2 after GB, indicating no apparent damage in the photosynthetic apparatus. However, longer girdling duration resulted in higher non-photochemical Chl fluorescence quenching (NPQ), but lower Fv/F0, actual efficiency of energy conversion in PS 2 under steady-state conditions (ΦPS2), and photochemical quenching coefficient (qP) in comparison with controls from 10:00 to 16:00 or 15:00 on days 4 and 5, respectively, indicating reversible injury in the photosynthetic apparatus.  相似文献   

13.
Dixit  Deeksha  Srivastava  N.K. 《Photosynthetica》2000,38(2):193-197
Changes in leaf growth, photosynthetic efficiency, and incorporation pattern of photosynthetically fixed 14CO2 in leaves 1 and 2 from plant apex, in roots, and rhizome induced in Curcuma by growing in a solution culture at Fe concentration of 0 and 5.6 g m–3 were studied. 14C was incorporated into primary metabolites (sugars, amino acids, and organic acids) and secondary metabolites (essential oil and curcumin). Fe deficiency resulted in a decrease in leaf area, its fresh and dry mass, chlorophyll (Chl) content, and CO2 exchange rate at all leaf positions. The rate of 14CO2 fixation declined with leaf position, maximum being in the youngest leaf. Fe deficiency resulted in higher accumulation of sugars, amino acids, and organic acids in leaves at both positions. This is due to poor translocation of metabolites. Roots and rhizomes of Fe-deficient plants had lower concentrations of total photosynthate, sugars, and amino acids whereas organic acid concentration was higher in rhizomes. 14CO2 incorporation in essential oil was lower in the youngest leaf, as well as incorporation in curcumin content in rhizome. Fe deficiency influenced leaf area, its fresh and dry masses, CO2 exchange rate, and oil and curcumin accumulation by affecting translocation of assimilated photosynthates.  相似文献   

14.
Diurnal changes of photosynthesis in the leaves of grapevine (Vitis vinifera × V. labrusca) cultivars Campbell Early and Kyoho grown in the field were compared with respect to gas exchanges and actual quantum yield of photosystem 2 (ΦPS2) in late May. Net photosynthetic rate (PN) of the two cultivars rapidly increased in the morning, saturated at photosynthetic photon flux density (PPFD) from 1200 to 1500 μmol m−2 s−1 between 10:00 and 12:00 and slowly decreased after midday. Maximum PN was 13.7 and 12.5 μmol m−2 s−1 in Campbell Early and Kyoho, respectively. The stomatal conductance (gs) and transpiration rate changed in parallel with PN, indicating that PN was greatly affected by gs. However, the decrease in PN after midday under saturating PPFD was also associated with the observed depression of ΦPS2 at high PPFD. The substantial increase in the leaf to air vapour pressure deficit after midday might also contribute to decline of gs and PN.  相似文献   

15.
Dixit  Deeksha  Srivastava  N.K.  Sharma  S. 《Photosynthetica》2002,40(1):109-113
Changes in leaf growth, net photosynthetic rate (P N), incorporation pattern of photosynthetically fixed 14CO2 in leaves 1–4 from top, roots, and rhizome, and in essential oil and curcumin contents were studied in turmeric plants grown in nutrient solution at boron (B) concentrations of 0 and 0.5 g m-3. B deficiency resulted in decrease in leaf area, fresh and dry mass, chlorophyll (Chl) content, and P N and total 14CO2 incorporated at all leaf positions, the maximum effect being in young growing leaves. The incorporation of 14CO2 declined with leaf position being maximal in the youngest leaf. B deficiency resulted in reduced accumulation of sugars, amino acids, and organic acids at all leaf positions. Translocation of the metabolites towards rhizome and roots decreased. In rhizome, the amount of amino acids increased but content of organic acids did not show any change, whereas in roots there was decrease in contents of these metabolites as a result of B deficiency. Photoassimilate partitioning to essential oil in leaf and to curcumin in rhizome decreased. Although the curcumin content of rhizome increased due to B deficiency, the overall rhizome yield and curcumin yield decreased. The influence of B deficiency on leaf area, fresh and dry masses, CO2 exchange rate, oil content, and rhizome and curcumin yields can be ascribed to reduced photosynthate formation and translocation.  相似文献   

16.
Wang  R.Z.  Yuan  Y.Q. 《Photosynthetica》2001,39(2):283-287
The intra- and inter-specific variations in net photosynthetic (P N) and transpiration (E) rates and water use efficiency (WUE) of Puccinellia tenuiflora and Puccinellia chinampoensis leaves were compared. The two species experienced a similar habitat, but differed in leaf area, leaf colour, and nitrogen contents. Leaf P N and E for both reproductive and vegetative shoots of the two species declined with leaf age. P N for reproductive shoots was less than for vegetative shoots, but their E was greater than that of vegetative shoots in the dry season. The average P N and E for reproductive shoots of P. tenuiflora were lower than those of P. chinampoensis, but higher for vegetative shoots.  相似文献   

17.
One-year-old olive trees (cv. Koroneiki) were grown in plastic containers of 50 000 cm3 under full daylight and 30, 60, and 90 % shade for two years. The effects of shade on leaf morphology and anatomy, including stomatal density and chloroplast structure, net photosynthetic rate (P N), stomatal conductance (g s), and fruit yield were studied. Shade reduced leaf thickness due to the presence of only 1–2 palisade layers and reduced the length of palisade cells and spongy parenchyma. The number of thylakoids in grana as well as in stroma increased as shade increased, while the number of plastoglobuli decreased in proportion to the reduced photosynthetically active radiation (PAR). The higher the level of shade, the lower the stomatal and trichome density, leaf mass per area (ALM), g s, and P N. Shade of 30, 60, and 90 % reduced stomatal density by 7, 16, and 27 %, respectively, while the corresponding reduction in P N was 21, 35, and 67 %. In contrast, chlorophyll a+b per fresh mass, and leaf width, length, and particularly area increased under the same shade levels (by 16, 33, and 81 % in leaf area). P N reduction was due both to a decrease in PAR and to the morphological changes in leaves. The effect of shade was more severe on fruit yield per tree (32, 67, and 84 %) than on P N indicating an effect on bud differentiation and fruit set. The olive tree adapts well to shade compared with other fruit trees by a small reduction in stomatal and trichome density, palisade parenchyma, and a significant increase in leaf area.  相似文献   

18.
Jeyaramraja  P.R.  Raj Kumar  R.  Pius  P.K.  Thomas  Jibu 《Photosynthetica》2003,41(4):579-582
Net photosynthetic rate (P N) in the mother leaves was higher in the drought tolerant (DT) clones of tea (Camellia sinensis) while liberation of the fixed 14C in light from the mother leaves was higher in the drought susceptible (DS) clones. The DT clones translocated more photosynthates to the crop shoots (three leaves and a bud) from the mother leaf than the DS clones. Concentrations of RuBP carboxylase (RuBPC) or oxygenase (RuBPO) had no relationship with the drought tolerant nature of tea clones but their ratio correlated with the same. DT tea clones had higher catalase activity that could scavenge the hydrogen peroxide formed in the photorespiratory pathway and thereby reduced photorespiration rate (P R). The ratio of RuBPC/RuBPO had a positive correlation with P N and catalase activity. Negative correlation between RuBPC/RuBPO and P R and between catalase activity and RuBPO activity was established.  相似文献   

19.
Turner NC 《Plant physiology》1974,53(3):360-365
Diurnal changes in the vertical profiles of irradiance incident upon the adaxial leaf surface (I), leaf resistance (r1), leaf water potential (ψ), osmotic potential (π), and turgor potential (P) were followed concurrently in crops of maize (Zea mays L. cv. Pa602A), sorghum (Sorghum bicolor [L.] Moench cv. RS 610), and tobacco (Nicotiana tabacum L. cv. Havanna Seed 211) on several days in 1968 to 1970 when soil water potentials were low. The r1, measured with a ventilated diffusion porometer, of the leaves in the upper canopy decreased temporarily after sunrise [~0530 hours Eastern Standard Time] as I increased, but then r1 increased again between 0700 and 0830 hr Eastern Standard Time as the ψ, measured with a pressure chamber, decreased rapidly from the values of −7, −4 and −6 bars at sunrise to minimal values of −18, −22 and −15 bars near midday in the maize, sorghum, and tobacco, respectively. The π, measured with a vapor pressure osmometer, also decreased after sunrise, but not to the same degree as the decrease in ψ, so that a P of zero was reached in some leaves between 0730 and 0800 hours. The lower (more negative) π of leaves in the upper canopy than those in the lower canopy gave the upper leaves a higher P at a given ψ than the lower leaves in all three species; leaves at intermediate heights had an intermediate P. This difference between leaves at the three heights in the canopy was maintained at all values of ψ. The r1 remained unchanged over a wide range of P and then increased markedly at a P of 2 bars in maize, −1 bar in sorghum, and near zero P in tobacco: r1 also remained constant until ψ decreased to −17, −20, and −13 bars in leaves at intermediate heights in maize, sorghum, and tobacco, respectively. In all three species r1 of leaves in the upper canopy increased at more negative values of ψ than those at the base of the canopy, and in tobacco, leaves in the upper canopy wilted at more negative values of ψ than those in the lower canopy.  相似文献   

20.
Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号