首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
 An amplified fragment length polymorphism (AFLP) map covering 965 cM was constructed using 94 recombinant inbred lines of a cross between the spring barley varieties Prisma and Apex. This map was employed to identify quantitative trait loci (QTLs) controlling plant height, yield and yield-determining physiological characters using an approximate multiple-QTL model, the MQM method. The seven physiological traits were parameters used in a process-based crop-growth model that predicts barley biomass production as affected by daily temperature and radiation. The traits were measured in experiments conducted over 2 years. Except for the relative growth rate of leaf area, all traits examined had at least one QTL in each year. QTLs and their effects were found to vary with developmental stages for one trait, the fraction of shoot biomass partitioned to leaves, that was measured at several stages. Most of the traits were associated, though to different extents, with the denso dwarfing gene (the height-reducing allele in Prisma) located on the long arm of chromosome 3. Some of the QTLs were mapped to similar positions in both years. The results in relation to effects of the dwarfing gene, the physiological basis for QTL×environment interaction, and the relative importance of the parameter traits with respect to yield, are discussed. Received: 17 September 1998 / Accepted: 28 December 1998  相似文献   

2.
Drought has become more frequent in Central Europe causing large losses in cereal yields, especially of spring crops. The development of new varieties with increased tolerance to drought is a key tool for improvement of agricultural productivity. Material for the study consisted of 100 barley recombinant inbred lines (RILs) (LCam) derived from the cross between Syrian and European parents. The RILs and parental genotypes were examined in greenhouse experiments under well-watered and water-deficit conditions. During vegetation the date of heading, yield and yield-related traits were measured. RIL population was genotyped with microsatellite and single nucleotide polymorphism markers. This population, together with two other populations, was the basis for the consensus map construction, which was used for identification of quantitative trait loci (QTLs) affecting the traits. The studied lines showed a large variability in heading date. It was noted that drought-treatment negatively affected the yield and its components, especially when applied at the flag leaf stage. In total, 60 QTLs were detected on all the barley chromosomes. The largest number of QTLs was found on chromosome 2H. The main QTL associated with heading, located on chromosome 2H (Q.HD.LC-2H), was identified at SNP marker 5880–2547, in the vicinity of Ppd-H1 gene. SNP 5880–2547 was also the closest marker to QTLs associated with plant architecture, spike morphology and grain yield. The present study showed that the earliness allele from the Syrian parent, as introduced into the genome of an European variety could result in an improvement of barley yield performance under drought conditions.  相似文献   

3.
Drought tolerance is one of the most important but complex traits of crops. We looked for quantitative trait loci (QTLs) that affect drought tolerance in maize. Two maize inbreds and their advanced lines were evaluated for drought-related traits. A genetic linkage map developed using RFLP markers was used to identify QTLs associated with drought-related traits. Twenty-two QTLs were detected, with a minimum of one and a maximum of nine for drought-related traits. A single-QTL was detected for sugar concentration accounting for about 52.2% of the phenotypic variation on chromosome 6. A single-QTL was also identified for each of the traits root density, root dry weight, total biomass, relative water content, and leaf abscisic acid content, on chromosomes 1 and 7, contributing to 24, 0.2, 0.4, 7, and 19% of the phenotypic variance, respectively. Three QTLs were identified for grain yield on chromosomes 1, 5, and 9, explaining 75% of the observed phenotypic variability, whereas four QTLs were detected for osmotic potential on chromosomes 1, 3, and 9, together accounting for 50% of the phenotypic variance. Nine QTLs were detected for leaf surface area on chromosomes 3 and 9, with various degrees of phenotypic variance, ranging from 25.8 to 42.2%. Four major clusters of QTLs were identified on chromosomes 1, 3, 7, and 9. A QTL for yield on chromosome 1 was found co-locating with the QTLs for root traits, total biomass, and osmotic potential in a region of about 15 cM. A cluster of QTLs for leaf surface area were coincident with a QTL for osmotic potential on chromosome 3. The QTLs for leaf area also clustered on chromosome 9, whereas QTLs for leaf abscisic acid content and relative water content coincided on chromosome 7, 10 cM apart. Co-location of QTLs for different traits indicates potential pleiotropism or tight linkage, which may be useful for indirect selection in maize improvement for drought tolerance.  相似文献   

4.
Association mapping of salt tolerance in barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2–8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na+, shoot Cl? and shoot, root Na+/K+ contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.  相似文献   

5.
6.
The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley ( Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley ( Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used for the infection in this experiment. Moreover, powdery mildew disease severity was observed in the field at two different epidemic stages. In addition to other DNA markers, the map included 13 RGA (resistance gene analog) loci. The structure of the data demanded a non-parametric QTL-analysis. For each of the four observations, two QTLs with very high significance were localised. QTLs for resistance against powdery mildew were detected on chromosome 1H, 2H, 3H, 4H and 7H. QTLs for resistance against leaf rust were localised on 2H and 6H. Only one QTL was common for two of the powdery mildew related traits. Three of the seven QTLs were localised at the positions of the RGA-loci. Three of the five powdery mildew related QTLs are sharing their chromosomal position with known qualitative resistance genes. All detected QTLs behaved additively. Possible sources of the distorted segregation observed, the differences between the results for the different powdery mildew related traits and the relation between qualitative and quantitative resistance are discussed.  相似文献   

7.
光合产物是水稻产量的主要来源,因此对水稻后期功能叶片尤其是剑叶形态生理性状的遗传分析对水稻高产育种很重要。利用来源于籼/粳交后代的重组自交系群体为材料对水稻剑叶形态(叶片长、宽、面积)和生理性状(叶绿度、持绿性)进行了QTL定位,并对这些性状与产量、产量性状的相关性进行了分析。两年分别定位了17、6和14个与剑叶形态性状、叶绿度和持绿性有关的QTL,其中10个QTL在两年中共同检测到。相关分析表明,较大的剑叶可以增加穗粒数并显著增加产量,然而叶绿度和持绿性与产量、产量性状无关或呈显著负相关。叶绿度与剑叶大小呈显著负相关以及籼/粳交群体后代半不育是叶绿度和持绿性与产量、产量性状无关或呈显著负相关的可能原因。染色体4上的RM255-RM349区域同时控制3个剑叶形态性状并且解释的变异也较大,该区域可用于遗传改良以提高水稻产量。染色体3上的RM422-RM565区域重叠了3个与持绿性有关的QTL,它们对产量的贡献有待于通过构建近等基因系进行深入研究。  相似文献   

8.
Leaf stripe caused by the fungus Pyrenophora graminea represents a serious threat to grain yield in organically grown barley and in conventional Nordic and Mediterranean districts, for which resistant cultivars are necessary. A medium-density, molecular marker map derived from a 'Steptoe' (partially resistant) x 'Morex' (susceptible) spring barley cross and its derived doubled-haploid mapping population inoculated with the fungus made it possible to identify QTLs of resistance to leaf stripe. In order to investigate isolate-specificity of partial resistance, the 'Steptoe' x 'Morex' segregating population was inoculated with two highly virulent P. graminea isolates, Dg2 and Dg5. The present study demonstrates that partial resistance to leaf stripe of cv 'Steptoe' is governed in part by shared loci and in part by isolate-specific ones. One QTL is common to the resistance for the two isolates, on the long arm of chromosome 2 (2H), two QTLs are linked on chromosome 3 (3H), and the remaining two are isolate-specific, respectively for isolate Dg2 on chromosome 2 (2H) and for isolate Dg5 on chromosome 7 (5H). The QTL in common is that with the major effect on the resistance for each isolate, explaining 18.3% and 30.9% R(2) respectively for Dg2 and Dg5. The isolate-specific QTLs mapped in the 'Steptoe' x 'Morex' barley reference map support the assumption of Parlevliet and Zadoks (1977) that partial resistance may be due to minor gene-for-minor-gene interactions. Map comparisons of the QTLs with the known qualitative resistance genes to leaf stripe, Rdg1 (2H) and Rdg2 (7H), as well as with other QTLs of partial resistance in barley, show that the QTL for resistance to both isolates mapped on the long arm of chromosome 2 (2H) does not coincide with the qualitative Rdg1 gene but is linked to it at about 30 cM. One isolate-specific QTL of resistance to P. graminea, mapped on the short arm of chromosome 2 (2H), is coincident with a QTL for resistance to Pyrenophora teres previously mapped in the 'Steptoe' x 'Morex' cross.  相似文献   

9.
Root system size (RSS) was measured in 12 diverse barley genotypes and 157 double-haploid lines (DHs), using electric capacitance. The parents of the DHs, Derkado and B83-12/21/5, carry different semi-dwarfing genes, sdw1 and ari-e.GP, respectively. Estimates of RSS were taken in the field thrice during plant development: stem elongation (RSS1), heading (RSS2) and grain filling (RSS3). The 12 barley genotypes were assessed over 3 years and at two or three locations each year; the DH mapping population was assessed at two locations in 2002. Among the 12 barley genotypes, those with the semi-dwarf genes had greater RSS values in all 3 years (28.9, 24.6 and 15.0% in years 1, 2 and 3, respectively) compared to non-semi-dwarf controls. The DH population showed transgressive segregation on both sides of the parent means, indicating polygenic control of RSS. Quantitative trait loci (QTLs) for RSS were found on five of the seven chromosomes: 1H, 3H, 4H, 5H and 7H and these were compared with previously mapped agronomic traits. The TotalRSS QTL on 3H was associated with sdw1 and QTLs for height, plant yield and plant weight. The RSS3 QTL on 5H was associated with ari-e.GP and QTLs for height, plant yield, plant weight, harvest index and tiller number. The RSS3 QTL on 7H was also associated with a TotalRSS QTL and QTLs for plant weight and harvest index. Other RSS QTLs were not associated with any other trait studied. RSS is considered to be a polygenic trait linked to important traits, in particular to yield. The study highlights the effects of semi-dwarfing genes and discusses the potential for breeding for root traits.  相似文献   

10.
Vitreousness and kernel hardness are important properties for maize processing and end-product quality. In order to examine the genetic basis of these traits, a recombinant inbred line population resulting from a cross between a flint line (F-2) and a semident line (Io) was used to search for vitreousness and kernel composition QTLs. Vitreousness was measured by image processing from a kernel section, while NIR spectroscopy was used to estimate starch, protein, cellulose, lipid and semolina yield. In addition, thousand-grain weight and grain weight per ear were measured. The MQTL method was used to map the QTLs for the different traits. An additional program allowed for the detection of interaction QTLs between markers. The total number of main-effect and interaction QTLs was similar. The QTLs were not evenly distributed but tended to cluster. Such clusters, mixing main-effect and interaction QTLs, were observed at six positions : on chromosomes 1, 2, 3, 6, 8 and 9. Two of them, on chromosomes 6 and 9, concerned both QTLs for kernel-weight traits and QTLs for kernel-composition traits (protein and cellulose). Technological-trait QTLs (vitreousness or semolina yield) were located less than 16 cM from a protein-content QTL on chromosome 2, and were co-located with lipid- and starch-content QTLs on chromosome 8. The co-location of a vitreousness and a semolina-yield QTL at the telomeric end of the chromosome 2 (Bin 2.02) is likely to be meaningful since measurement of these related traits, made by completely different methods (NIRS vs image processing), yielded very close QTLs. A similar location was previously reported independently for a kernel-friability QTL. Comparing the map location of the numerous loci for known-function genes it was shown that three zein loci were closely linked to QTLs for vitreousness on chromosome 3, for semolina yield and starch on chromosome 4, and for protein, cellulose and grain weight on chromosome 9. Some other candidate genes linked to starch precursor metabolism were also suggested on chromosomes 6 and 8. Received: 27 April 2000 / Accepted: 3 July 2000  相似文献   

11.
The genomic regions controlling caryopsis dormancy and seedling desiccation tolerance were identified using 152 F4 lines derived from a cross between Mona, a Swedish cultivar, and an Israeli xeric wild barley Hordeum spontaneum genotype collected at Wadi Qilt, Israel. Dormancy, the inability of a viable seed to germinate, and desiccation tolerance, the ability of the desiccated seedlings to revive after rehydration, were characterized by fitting the germination and revival data with growth curves, using three parameters: minimum, maximum, and slope of germination or revival rate derived by the least square method. The genetic map was constructed with 85 genetic markers (SSRs, AFLPs, STSs, and Dhn genes) using the multipoint-mapping algorithm. Quantitative trait loci (QTLs) mapping was conducted with the multiqtl package. Ten genomic regions were detected that affected the target traits, seven of which affected both dormancy and desiccation tolerance traits. Both the wild barley genotype and the Swedish cultivar contributed the favorite alleles for caryopsis dormancy, whereas seedling desiccation tolerance was attributed to alleles descending from the cultivar. The results indicate that some barley dormancy genes are lost during domestication and that dormancy QTLs are associated with abiotic stress tolerance.  相似文献   

12.
Photosynthesis of carbohydrate is the primary source of grain yield in rice (Oryza sativa L.). It is important to genetically analyze the morphological and the physiological characteristics of functional leaves, especially flag leaf, in rice improvement. In this study, a recombinant inbred population derived from a cross between an indica (O. sativa L. ssp. indica) cultivar and a japonica (O. sativa L. ssp. japonica) cultivar was employed to map quantitative traits loci (QTLs) for the morphological (i.e., leaf length, width, and area) and physiological (i.e., leaf color rating and stay-green) characteristics of flag leaf and their relationships with yield and yield traits in 2003 and 2004. A total of 17 QTLs for morphological traits (flag leaf length, width, and area), 6 QTLs for degree of greenness and 14 QTLs for stay-green-related traits (retention-degrees of greenness, relative retention of greenness, and retention of the green area) were resolved, and 10 QTLs were commonly detected in both the years. Correlation analysis revealed that flag leaf area increased grain yield by increasing spikelet number per panicle. However, the physiological traits including degree of greenness and stay-green traits were not or negatively correlated to grain yield and yield traits, which may arise from the negative relation between degree of greenness and flag leaf size and the partial sterility occurred in a fraction of the lines in this population. The region RM255-RM349 on chromosome 4 controlled the three leaf morphological traits simultaneously and explained a large part of variation, which was very useful for genetic improvement of grain yield. The region RM422-RM565 on chromosome 3 was associated with the three stay-green traits simultaneously, and the use of this region in genetic improvement of grain yield needs to be assessed by constructing near-isogenic lines.  相似文献   

13.
A genetic study is presented for traits relating to nitrogen use in wheat. Quantitative trait loci (QTLs) were established for 21 traits relating to growth, yield and leaf nitrogen (N) assimilation during grain fill in hexaploid wheat (Triticum aestivum L.) using a mapping population from the cross Chinese Spring × SQ1. Glutamine synthetase (GS) isozymes and estimated locations of 126 genes were placed on the genetic map. QTLs for flag leaf GS activity, soluble protein, extract colour and fresh weight were found in similar regions implying shared control of leaf metabolism and leaf size. Flag leaf traits were negatively associated with days to anthesis both phenotypically and genetically, demonstrating the complex interactions of metabolism with development. One QTL cluster for GS activity co-localised with a GS2 gene mapped on chromosome 2A, and another with the mapped GSr gene on 4A. QTLs for GS activity were invariably co-localised with those for grain N, with increased activity associated with higher grain N, but with no or negative correlations with grain yield components. Peduncle N was positively correlated, and QTLs co-localised, with grain N and flag leaf N assimilatory traits, suggesting that stem N can be indicative of grain N status in wheat. A major QTL for ear number per plant was identified on chromosome 6B which was negatively co-localised with leaf fresh weight, peduncle N, grain N and grain yield. This locus is involved in processes defining the control of tiller number and consequently assimilate partitioning and deserves further examination. Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

14.
In cereals, rust fungi are among the most harmful pathogens. Breeders usually rely on short-lived hypersensitivity resistance. As an alternative, "avoidance" may be a more durable defence mechanism to protect plants to rust fungi. In Hordeum chilense avoidance is based on extensive wax covering of stomata, which interferes with the induction of appressorium formation by the rust fungi. High avoidance levels are associated with a higher stoma density on the abaxial leaf epidermis. The avoidance level was assessed as the percentage of germ tube/stoma encounters that did not result in appressorium differentiation by Puccinia hordei, the barley leaf rust fungus. One hundred F(2) individuals from the cross between two H. chilense accessions with contrasting levels of avoidance showed a continuous distribution for avoidance of the rust fungus and for stoma density, indicating quantitative inheritance of the traits. No significant correlation was found between avoidance and stoma density in the segregating F(2) population. In order to map quantitative trait loci (QTLs) for both traits, an improved molecular marker linkage map was constructed, based on the F(2) population. The resulting linkage map spanned 620 cM and featured a total of 437 AFLP markers, thirteen RFLPs, four SCARs, nine SSRs, one STS and two seed storage protein markers. It consisted of seven long and two shorter linkage groups, and was estimated to cover 81% of the H. chilense genome. Restricted multiple interval mapping identified two QTLs for avoidance and three QTLs for stoma density in the abaxial leaf surface. The QTLs for avoidance were mapped on chromosome 3 and 5; those for stoma density on chromosomes 1, 3 and 7. Only the two QTLs regions located on chromosome 3 (one for avoidance and the other for stoma density) overlapped. The wild barley H. chilense has a high crossability with other members of the Triticeae tribe. The knowledge on the location of the QTLs responsible for the avoidance trait is a prerequisite to transfer this favourable agronomic trait from H. chilense to cultivated cereal genomes.  相似文献   

15.
A better understanding of the genetics of complex traits, such as yield, may be achieved by using molecular tools. This study was conducted to estimate the number, genome location, effect and allele phase of QTLs determining agronomic traits in the two North American malting barley (Hordeum vulgare L.) quality variety standards. Using a doubled haploid population of 140 lines from the cross of two-rowed Harrington×six-rowed Morex, agronomic phenotypic data sets from nine environments, and a 107-marker linkage map, we performed QTL analyses using simple interval mapping and simplified composite interval mapping procedures. Thirty-five QTLs were associated, either across environments or in individual environments, with five grain and agronomic traits (yield, kernel plumpness, test weight, heading date, and plant height). Significant QTL×environment interaction was detected for all traits. These interactions resulted from both changes in the magnitude of response and changes in the sign of the allelic effect. QTLs for multiple traits were coincident. The vrs1 locus on chromosome 2 (2H), which determines inflorescence row type, was coincident with the largest-effect QTL determining four traits (yield, kernel plumpness, test weight, and plant height). QTL analyses were also conducted separately for each sub-population (six-rowed and two-rowed). Seven new QTLs were detected in the sub-populations. Positive transgressive segregants were found for all traits, but they were more prevalent in the six-rowed sub-population.QTL analysis should be useful for identifying candidate genes and introgressing favorable alleles between germplasm groups. Received: 18 August 2000 / Accepted: 15 December 2000  相似文献   

16.
Advanced backcross QTL (AB-QTL) analysis was deployed to identify allelic variation in wild barley (Hordeum vulgare ssp. spontaneum) of value in the improvement of grain yield and other agronomically important traits in barley (Hordeum vulgare ssp. vulgare) grown under conditions of water deficit in Mediterranean countries. A population of 123 double haploid (DH) lines obtained from BC1F2 plants derived from a cross between Barke (European two-row cultivar) and HOR11508 (wild barley accession) were tested in replicated field trials, under varying conditions of water availability in Italy, Morocco and Tunisia, for seven quantitative traits. Significant QTL effects at one (P 0.001) or more trial sites (P 0.01) were identified for all traits. At 42 (52%) of the 80 putative QTLs identified, the allele increasing a “traits' value” was contributed by H. spontaneum. For example, though the majority (67%) of QTL alleles increasing grain yield were contributed by H. vulgare, H. spontaneum contributed the alleles increasing grain yield at six regions on chromosomes 2H, 3H, 5H and 7H. Among them, two QTLs (associated to Bmac0093 on chromosome 2H and to Bmac0684 on chromosome 5H) were identified in all three locations and had the highest additive effects. The present study shows the validity of deploying AB-QTL analysis for identifying favourable QTL alleles from wild germplasm and indicates its potential as an enhancement strategy for the genetic improvement of cultivars better adapted to drought-prone environments.  相似文献   

17.
Hao W  Lin HX 《遗传学报》2010,37(10):653-666
Rice is the primary carbohydrate staple cereal feeding the world population. Many genes, known as quantitative trait loci (QTLs), con-trol most of the agronomically important traits in rice. The identification of QTLs controlling agricultural traits is vital to increase yield and meet the needs of the increasing human population, but the progress met with challenges due to complex QTL inheritance. To date,many QTLs have been detected in rice, including those responsible for yield and grain quality; salt, drought and submergence tolerance;disease and insect resistance; and nutrient utilization efficiency. Map-based cloning techniques have enabled scientists to successfully fine map and clone approximately seventeen QTLs for several traits. Additional in-depth functional analyses and characterizations of these genes will provide valuable assistance in rice molecular breeding.  相似文献   

18.

Key message

Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency.

Abstract

Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutEGY) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutEGY. A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.
  相似文献   

19.
A combination of random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers has been used to locate genes controlling important developmental characters in barley. The denso dwarfing gene has been mapped to the long arm of chromosome 3H. Stepwise multiple regression was also used to identify another region of the barley genome (on chromosome 7H), which contributed to variation in height. The denso locus was shown to be associated with delaying time to heading. A protein (WSP2) and an RAPD marker on barley chromosomes 5H and 6H, respectively, were also associated with time to heading. These results are discussed in relation to the genetic analysis of developmentally important traits and the development of dwarfing genes in barley breeding programs.  相似文献   

20.
The sodium and potassium concentrations in leaf and stem have been genetically studied as physiological components of the vegetative and reproductive development in two populations of F8 lines, derived from a salt sensitive genotype of Solanum lycopersicum cv. Cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Genetic parameters of ten traits under salinity and five of them under control conditions were studied by ANOVA, correlation, principal component and QTL analysis to understand the global response of the plant. Two linkage maps including some tomato flowering time and salt tolerance candidate genes encoding for SlSOS1, SlSOS2, SlSOS3, LeNHX1, LeNHX3, were used for the QTL detection. Thirteen and 20 QTLs were detected under salinity in the P and C populations, respectively, and four under control conditions. Highly significant and contributing QTLs (over 40%) for the concentrations of Na+ and K+ in stems and leaves have been detected on chromosome 7 in both the populations. This is the only genomic position where the concentration QTLs for both the cations locate together. The proportion of QTLs significantly affected by salinity was larger in the P population (64.3%, including all QTLs detected under control) than in the C population (21.4%), where the estimated genetic component of variance was larger for most traits. A highly significant association between the leaf area and fruit yield under salinity was found only in the C population, which is supported by the location of QTLs for these traits in a common region of chromososome C1. As far as breeding for salt tolerance is concerned, only two sodium QTLs (lnc1.1 and lnc8.1) map in genomic regions of C1 and C8 where fruit yield QTLs are also located but in both the cases the profitable allele corresponds to the salt sensitive, cultivated species. One of those QTLs, lnc1.1 might involve LeNHX3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号