首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

2.
Gordonia sp. BS29 is a hydrocarbon-degrading bacterium isolated from a site chronically contaminated by diesel. The strain produces extracellular bioemulsifiers, able to produce stable emulsions, and cell-bound glycolipid biosurfactants, able to reduce surface tension. The aims of this work were to investigate the cultural factors affecting the production of the cell-bound biosurfactants by Gordonia sp. BS29 and to find the optimal composition of growth medium for the production. The cultural factors which have a significant influence on surfactant biosynthesis, identified by a two level 2(8-2) Fractional Factorial Design, were the type and concentration of the carbon source, the concentrations of phosphates and sodium chloride, and the interactions among these factors. On these factors, a flask-scale optimisation of cultural conditions was carried out. Then, a steepest ascent procedure and a Central Composite Design were applied to obtain a second order polynomial function fitting the experimental data near the optimum. In the optimised cultural condition we obtained a 5-fold increase in the biosurfactant concentration compared to the un-optimised medium (26.00), reaching a Critical Micelle Dilution value (129.43) among the highest in literature. The optimisation procedure did not change the number and type of the glycolipid biosurfactants produced by Gordonia sp. BS29.  相似文献   

3.
Summary Five strains of the Rhodococcus and Gordonia genera were evaluated for their potential use in bioremediation of polycyclic aromatic hydrocarbons (PAH) with or without another substrate (co-substrate). Their ability to produce biosurfactants or to degrade phenanthrene when growing on glucose, hexadecane and rapeseed oil was tested in liquid medium at 30 °C. All strains showed biosurfactant activity. The highest reduction in surface tension was recorded in whole cultures of Rhodococcus sp. DSM 44126 (23.1%) and R. erythropolis DSM 1069 (21.1%) grown on hexadecane and Gordonia sp. APB (20.4%) and R. erythropolis TA57 (18.2%) grown on rapeseed oil. Cultures of Gordonia sp. APB and G. rubripertincta formed emulsions when grown on rapeseed oil. After 14 days of incubation, Rhodococcus sp. DSM 44126 degraded phenanthrene (initial concentration 100 μg ml−1) as sole carbon source (79.4%) and in the presence of hexadecane (80.6%), rapeseed oil (96.8%) and glucose (below the limit of detection). The other strains degraded less than 20%, and then with a co-substrate only. Rhodococcus sp. DSM 44126 was selected and its performance evaluated in soil spiked with a mixture of PAH (200 mg kg−1). The effect of the addition of 0, 0.1 and 1% rapeseed oil as co-substrate was also tested. Inoculation enhanced the degradation of phenanthrene (55.7% and 95.2% with 0.1% oil and without oil respectively) and of anthracene (29.2% with 0.1% oil). Approximately 96% of anthracene and 62% of benzo(a)pyrene disappeared from the soil (inoculated and control) after 14 days and anthraquinone was detected as a metabolite. Rhodococcus sp. DSM 44126 was identified as Rhodococcus wratislaviensis by 16S rRNA sequencing and was able to degrade anthracene as sole carbon source in liquid culture.  相似文献   

4.
The aim of this work was to evaluate the effect of several non-ionic surfactants (Tween-80, Triton X-100 and Tergitol NP-10) on the ability of different bacteria (Enterobacter sp., Pseudomonas sp. and Stenotrophomonas sp.) to degrade polycyclic aromatic hydrocarbons (PAHs). Bacterial cultures were performed at 25 °C in an orbital shaker under dark conditions in BHB medium containing 1% of surfactant and 500 mg l−1 of each PAH. Experiments performed with Tween-80 showed the highest cell density values and maximum specific growth rate because this surfactant was used as a carbon source by all bacteria. High degree of PAHs degradation (>90%) was reached in 15 days in all experiments. Toxicity increased at early times using Tween-80 but decreased to low levels in a short time after the firsts 24 h. On the other hand, Triton X-100 and Tergitol NP-10 were not biodegraded and toxicity kept constant along time. However, PAHs-degradation rate was higher, especially by the action of Enterobacter sp. with Tween-80 or Triton X-100. Control experiments performed without surfactant showed a significant decrease in biomass growth rate with a subsequent loss of biodegradation activity likely due to a reduced solubility and bioavailability of PAHs in absence of surfactant.  相似文献   

5.
Deterioration of raw materials of six medicinal plants viz. Terminalia arjuna, Acorus calamus, Rauvolfia serpentina, Holarrhena antidysenterica, Withania somnifera and Boerhaavia diffusa was examined. Some of the contaminated raw materials were found to be deteriorated by toxigenic strains of Aspergillus flavus and contain aflatoxin B1 (41.0–95.4 μg kg−1) which is above the permissible limit. Essential oil of Cymbopogon flexuosus and its components was found efficient in checking fungal growth and aflatoxin production. C. flexuosus essential oil absolutely inhibited the growth of A. flavus and aflatoxin B1 production at 1.3 μl ml−1 and 1.0 μl ml−1 respectively. The individual oil components were more efficacious than the Cymbopogon oil as such which emphasizes masking of their efficacy when combined together. Eugenol exhibited potent antifungal and aflatoxin inhibitory activity at 0.3 μl ml−1 and 0.1 μl ml−1 respectively. Eugenol was found superior over some prevalent synthetic antimicrobials and exhibited broad fungitoxic spectrum against some biodeteriorating moulds. Prospects of exploitation of the oil and its components as acceptable plant based antimicrobials in qualitative as well as quantitative control of biodeterioration of herbal raw materials have been discussed.  相似文献   

6.
Ochrobactrum sp., was tested with regard to its phenol degradation capacity at different pH levels, and with different carbon sources (mineral salt medium with glucose (MSG) and the same medium with 0.5%, 1%, and 2% (v/v) molasses (MSM)) and phenol concentrations. The highest degradation was in mineral salt medium with 1% (v/v) molasses (45.9%), while degradation was 21.1% in mineral salt medium with 5 g l−1 glucose. These data show that the addition of molasses to mineral salt medium enhanced phenol degradation by Ochrobactrum sp. The bacterium can be used effectively to treat wastewaters containing phenol.  相似文献   

7.
Oily sludge degradation by bacteria from Ankleshwar, India   总被引:7,自引:0,他引:7  
Three bacterial strains, Bacillus sp. SV9, Acinetobacter sp. SV4 and Pseudomonas sp., SV17 from contaminated soil in Ankleshwar, India were tested for their ability to degrade the complex mixture of petroleum hydrocarbons (such as alkanes, aromatics, resins and asphaltenes), sediments, heavy metals and water known as oily sludge. Gravimetric analysis showed that Bacillus sp. SV9 degraded approx. 59% of the oily sludge in 5 days at 30 °C whereas Acinetobacter sp. SV4 and Pseudomonas sp. SV17 degraded 37% and 35%. Capillary gas chromatographic analysis revealed that after 5 days the Bacillus strain was able to degrade oily sludge components of chain length C12–C30 and aromatics more effectively than the other two strains. Maximum drop in surface tension (from 70 to 28.4 mN/m) was accompanied by maximum biosurfactant production (6.7 g l−1) in Bacillus sp. SV9 after 72 h, these results collectively indicating that this bacterial strain has considerable potential for bioremediation of oily sludge.  相似文献   

8.
The roles of the extracellular biosurfactants produced by two bacterial strains, Pseudomonas aeruginosa GL1 and Rhodococcus equi Ou2, in hexadecane uptake and biodegradation were compared. For this purpose, cell hydrophobicity and production of glycolipidic biosurfactants were evaluated during bacterial growth on hexadecane, as well the effects of these biosurfactants on culture supernatants properties i.e., surface and interfacial tensions, and emulsification and pseudosolubilization capacities. The results showed that the role of biosurfactants was different in these two strains and was directly related to the hydrophobicity of the bacterial cells concerned. Extracellular biosurfactants produced by strain R. equi Ou2 had only a minor role in hexadecane degradation. Direct interfacial accession appeared to be the main mechanism for hexadecane uptake by the hydrophobic cells of strain R. equi Ou2. On the contrary, the biosurfactants produced by P. aeruginosa GL1 were required for growth on hexadecane, and their pseudosolubilization capacity rather than their emulsification capacity was involved in substrate degradation, allowing uptake from hexadecane micelles by the hydrophilic cells of this bacterium. The roles of biosurfactants thus differ widely among bacteria degrading hydrophobic compounds. J.-P. Vandecasteele—in retirement  相似文献   

9.
Summary Axisymmetric drop shape analysis by profile (ADSA-P) is a technique developed in colloid and surface science to simultaneously determine the contact angle and liquid surface tension from the profile of a droplet resting on a solid surface. In this paper is described how ADSA-P can be employed to assess bacterial biosurfactant production. Nine Streptococcus mitis strains, two of which are known to produce biosurfactants, and two S. salivarius strains, which do not produce biosurfactants, were suspended at two concentrations in a 10-mm potassium phosphate buffer, pH 7.0. Subsequently, a 100-l droplet of each suspension was put on a fluoroethylenepropylene surface and the profile of the droplet determined with a contour monitor as a function of time up to 2 h. The surface tension of these suspensions was then calculated from the droplet profiles with ADSA-P. The surface tension of suspensions of the two non-producing strains remained stable within 4 mJ·m–2, whereas the surface tension of suspensions of five out of the nine S. mitis strains employed, including those of the known producer strains, decreased significantly (up to 26 mJ·m–2). This decrease was, in addition, concentration dependent. From these observations, we decided that all strains for which these concentration-dependent decreases were observed, could be regarded as biosurfactant producers. In order to rule out the possibility that the surface tension decreases observed were due to the collection of cells at the suspension-air interface, we investigated whether there was a relationship between surface tension decrease and hydrophobicity of the cells, as assessed by contact angle measurements and bacterial adhesion to hydrocarbons. Since no such a relationship was found, it can be concluded that ADSA-P is an excellent technique, based on using small amounts of cells to rapidly determine whether or not a bacterial strain produces biosurfactants. Offprint requests to: W. van der Vegt  相似文献   

10.
In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26–30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.  相似文献   

11.
Summary The rate of inorganic carbon uptake and its steadystate accumulation ratio (intracellular/extracellular concentration) was determined in the cyanobacteriumAnabaena variabilis as a function of extracellular pH. The free energy of protons ( ) across the plasmalemma was calculated from determinations of membrane potential, and intracellular pH, as a function of the extracellular pH. While inward proton motive force decreased with increasing extracellular pH from 6.5 to 9.5, rate of HCO 3 influx and its accumulation ration increased. The latter is several times larger than would be expected should HCO 3 influx be driven by . It is concluded that HCO 3 transport in cyanobacteria is not driven by the proton motive force.  相似文献   

12.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

13.
Candida antarctica synthesised surface-active mannosylerythritol lipids at 46 g l–1 by adding 80 g soybean oil l–1 to the medium and maintaining the pO2 at 50% with an air flow rate 1 vvm. Two-stage culturing of C. antarctica avoided medium foaming but the yield of biosurfactants synthesis was 28 g l–1. The biosurfactants decreased the surface tension of water to 35 mN m–1.  相似文献   

14.
This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10–35 °C. Respirometry was carried out in an open-top static system and RMR corrected for seawater–atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T − 29.0 mg O2 kg− 0.8 h− 1 and for yellowtail kingfish was 12.11T − 39.40 mg O2 kg− 0.8 h− 1. The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T − 9.68 kJ kg− 0.8 day− 1 and for yellowtail kingfish as 4.04T − 13.14 kJ kg− 0.8 day− 1. Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 °C and for yellowtail kingfish at 22.8 °C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol− 1) and yellowtail kingfish (44.1 kJ mol− 1).  相似文献   

15.
Ahn CY  Joung SH  Jeon JW  Kim HS  Yoon BD  Oh HM 《Biotechnology letters》2003,25(14):1137-1142
Of several types of chemical surfactants and biosurfactants, only the culture broth of Bacillus subtilis C1 containing surfactin at 10 mg l–1 completely inhibited the growth of Microcystis aeruginosa, a bloom-forming cyanobacterium in highly eutrophic lakes. The broth with 10 mg surfactin l–1 also removed 85% of the maximally grown M. aeruginosa (chlorophyll-a concentration, 1000 g l–1) within 2 d, and the removal efficiency was enhanced by Ca2+ over 1 mM. The growth of Anabaena affinis, another bloom-forming cyanobacterium, was also inhibited about 70% with surfactin at 10 mg l–1 broth. However, the effect of the broth was delayed over 3 d in the green algae, Chlorella vulgaris and Scenedesmus sp., and was negligible in a diatom, Navicula sp., indicating the potential for the selective control of cyanobacterial blooms.  相似文献   

16.
Changes in leaf mass per area (LMA), nitrogen content on a mass-basis (Nm) and on an area basis (Na) with relative irradiance were assessed in leaves of eight temperate species harvested at different depths in a canopy. Relative irradiance (GSF) at the points of leaf sampling was estimated by hemispheric photographs. There was a strong species-dependent positive relationship between LMA and GSF for all species. Shade-tolerant species such as Fagus sylvatica showed lower LMA for the same GSF than less tolerant species as Quercus pyrenaica or Quercus petraea. The only evergreen species in the study, Ilex aquifollium, had the highest LMA, independent of light environment, with minimum values much higher than the rest of the broad-leaved species studied. There was no relation between Nm and GSF for most species studied and only a very weak relation for the relative shade-intolerant species Q. pyrenaica. Within each species, the pattern of Na investment with regard to GSF was linked mainly to LMA. At the same relative irradiance, differences in Na among species were conditioned both by the LMA–GSF relationship and by the species Nm value. The lowest Nm value was measured in I. aquifollium (14.3 ± 0.6 mg g–1); intermediate values in Crataegus monogyna (16.9 ± 0.6 mg g–1) and Prunus avium (19.1 ± 0.6 mg g–1) and higher values, all in a narrow range (21.3 ± 0.6 to 23 ± 0.6 mg g–1), were measured for the other five species. Changes in LMA with the relative irradiance were linked both to lamina thickness (LT) and to palisade/spongy parenchyma ratio (PP/SP). In the second case, the LMA changes may be related to an increase in lamina density as palisade parenchyma involves higher cell packing than spongy parenchyma. However, since PP/SP ratio showed a weak species-specific relationship with LMA, the increase in LT should be the main cause of LMA variation.  相似文献   

17.
The algicidal activity of the rhamnolipid biosurfactants (the mixture of Rha-Rha-C10-C10 and Rha-C10-C10) produced by Pseudomonas aeruginosa was investigated in the present paper. The results indicated that the biosurfactants had potential algicidal effects on the harmful algal bloom (HAB) species, Heterosigma akashiwo. The growth of H. akashiwo was strongly inhibited in medium containing rhamnolipids (0.4–3.0 mg L−1); moreover, the rhamnolipids showed strong lytic activity toward H. akashiwo at higher concentrations (≥4.0 mg L−1). In addition, the effects of the rhamnolipids on the growth of Gymnodinium sp. and Prorocentrum dentatum, another two kinds of HAB species, were also studied. Compared with the dramatic algicidal effect on H. akashiwo, the cells of P. dentatum were inhibited or lysed at higher concentrations (1.0–10.0 mg L−1), while the cells of Gymnodinium sp. were not suppressed with the same treatment, indicating the rhamnolipids had the potential for the selective control of HABs.Morphometric analysis at ultrastructural level by transmission electron micrographs indicated that the extent of ultrastructural damage of the alga was severe at high concentrations of rhamnolipids and during extended periods of contact. The first response occurred in the plasma membrane which partly disintegrated. The lack of membrane facilitated the rhamnolipid biosurfactants into the cells and allowed damage to other organelles, which resulted in the injury of chloroplast, vacuolization of mitochondria and deformation of the cristae, disruption of nuclear membrane and condensation of chromatin in nucleus, suggesting that the lytic activity of rhamnolipids was mainly due to their powerful surfactivity and their tendency to cohere on the surface of phospholipids bimolecular layer of the cells and further destroyed the layers, and then the structure of quasi-membrane configurations inside the cells was disintegrated, following by the irreversible damage to the ultrastructure and the loss of the function of organelles, consequently leading the cells to lyse.  相似文献   

18.
We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning 13C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55–75 °C) and retention time (0–9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 × 10− 3 h− 1 at 55 °C, 2.94 × 10− 2 h− 1 at 65 °C, and 6.84 × 10− 2 h− 1 at 75 °C. The degradation velocities of glucose were 0.01 h− 1 at 55 °C, 0.14 h− 1 at 65 °C, 0.34 h− 1 at 75 °C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol.  相似文献   

19.
Nazina  T. N.  Sokolova  D. Sh.  Grigor'yan  A. A.  Xue  Y.-F.  Belyaev  S. S.  Ivanov  M. V. 《Microbiology》2003,72(2):173-178
Twenty pure cultures isolated from formation waters of the Daqing oil field were studied with respect to their capacity to produce surface-active compounds in media with individual hydrocarbons, lower alcohols, and fatty acids. Aerobic saprotrophic bacteria belonging to the genera Bacillus, Brevibacillus, Rhodococcus, Dietzia, Kocuria, Gordonia, Cellulomonas, Clavibacter, Pseudomonas, and Acinetobacter decreased the surface tension of cultivation media from 55–63 to 28–44 mN/m. Strains of Bacillus cereus, Rhodococcus ruber, andBacillus licheniformis produced biosurfactants most actively. Bacteria of the genera Rhodococcus, Dietzia, Kocuria, and Gordonia produced exopolysaccharides in media with hydrocarbons. Culture liquids of the strains of R. ruberand B. licheniformis exhibited an oil-releasing effect. Thus, the Daqing oil field is inhabited by aerobic bacteria capable of producing effective oil-releasing agents.  相似文献   

20.
Monthly sediment sampling was carried out from February 1999 to December 2001 at a 21-m deep station. Benthic diatom biomass and meiobenthic abundance were estimated together with abiotic parameters (PAR irradiance, temperature, salinity and dissolved oxygen). During the three-year study average microphytobenthic abundance (ABU) and biomass (BIOM) were 4.7 ± 2.6 × 104 cell cm− 3 and 14.3 ± 8.1 µg C cm− 3, respectively, while the mean meiofaunal abundance was 923 ± 210 ind 10 cm− 2. The microphytobenthic community was mainly composed of Bacillariophyceae (99.3%) with a smaller percentage of phytoflagellates (0.7%). Among diatoms 39 genera were observed with a total of 110 taxa and 100 species. The main benthic diatom genera were Navicula, Paralia, Nitzschia and Diploneis. A total of 18 meiobenthic taxa were detected: 7 taxa belonged to permanent meiofauna (Nematoda, Copepoda Harpacticoida and their nauplius stages, Kinorhyncha, Turbellaria, Gastrotricha, Ostracoda and Acarina). The remaining 11 taxa belonged to temporary meiofauna (juvenile macrofauna: Polychaeta, Cumacea, Amphipoda, Isopoda, Nemertea, Decapoda, Sipunculida, Ophiurida, Gastropoda, Bivalvia and Cnidaria). Positive correlations between PAR and the biomass of the major diatom genera were revealed. Temperature did not seem to influence the microphytobenthic community as a whole, although we found statistically significant correlation between temperature and the genera Nitzschia and Amphora. Salinity showed significant positive correlation only with the genus Pleurosigma, in contrast, dissolved oxygen did not seem to affect the microalgal community. The major meiofaunal taxa were not correlated with abiotic variables, but were positively correlated with most diatom genera. Paralia was negatively correlated with the three main meiofaunal taxa. The three-point moving average applied to our biotic data allowed us to better the signal without the background noise which hid the actual variations of the studied communities. Applying the three-point moving average to the main taxa, it resulted that microphyto- and meiobenthos were in phase. The principal component analysis (PCA), constructed considering both biotic and abiotic variables, accounted for 58% of the total variance. PC1 axis explained 39.74% of the total variance and was correlated with Navicula, Diploneis and Nitzschia. PC2 axis explained 18.40% of the remaining variance and was correlated with Copepoda, Paralia and PAR. In contrast to 1999 and 2001, a mucilage event occurred in 2000, which resulted in the formation of a false bottom and a decrease in the abundance of microphyto- and meiobenthos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号