首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
叉角厉蝽对斜纹夜蛾不同龄期幼虫的选择捕食作用   总被引:6,自引:2,他引:6  
蒋杰贤  梁广文 《生态学报》2001,21(4):684-687
应用二次回归通用旋转组合设计探讨了叉角厉蝽与斜纹夜蛾低龄幼虫,中龄幼虫和高龄幼虫共存系统中,天敌对猎物不同年龄等级的选择捕食作用,建立了3个年龄等级的幼虫被捕食量模型。根据被捕食量模型可计算出斜纹夜蛾3个年龄等级不同密度组合下,天敌对猎物的选择捕食比率,结果表明,在3个年龄等级相同密度的组合下,叉角厉蝽倾向于捕食个体大的中高龄幼虫。  相似文献   

2.
Predation encounters were staged in the laboratory to compare prey responsiveness, predator error rate, and predator capture success for juvenile cod Gadus morhua (a suction feeder) and herring Clupea harengus (a biting predator) preying on herring and plaice Pleuronectes platessa larvae. Trials were conducted at near natural temperature extremes for the larvae (8 and 13°C) to assess the importance of water temperature to the interaction. Herring larvae were significantly more responsive to attacks by herring than were plaice larvae (5·7 vs 0'0%). The two prey species were equally responsive to attacks by cod (2–6 vs 10%). Cod caught 91% of herring larvae attacked and juvenile herring caught 87%. Cod were successful in 96% of attacks on plaice, but juvenile herring caught significantly fewer (83%) plaice larvae. For each predator species, capture success did not vary significantly with prey species. Overall capture success for herring was significantly lower than that for cod. Responsiveness of herring larvae to attacks by juvenile herring increased with temperature, but predator error rate and capture success were not altered by water temperature.  相似文献   

3.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

4.
The sentinel prey method can quantify predation pressure in various habitats. Real prey is assumed to more realistically mimic the predator experience but the predator can rarely be identified. Artificial prey made of plasticine may lack real chemical cues, but provides information about predator identity. However, the relationship between predation pressure registered by artificial versus real prey is not clear. We tested the relative attractiveness of artificial caterpillars, and intact, wounded, or dead larvae of the cabbage moth (Mamestra brassicae) for the carabid predator Pterostichus melanarius Illiger (Coleoptera: Carabidae). P. melanarius adults were attracted to dead caterpillars more than to live or wounded ones. Coating artificial caterpillars with caterpillar haemolymph increased their attractiveness. However, predators were not attracted more to healthy, real caterpillars than to “untreated” artificial ones. We conclude that using artificial caterpillars does not underestimate predation pressure by this carabid on healthy caterpillars.  相似文献   

5.
Transport and retention of the insect growth regulators (IGRs) diflubenzuron and pyriproxyfen in larvae of the beet armywormSpodoptera exigua (Hübner) and in nymphs of the predatory bugPodisus maculiventris (Say) were investigated. In a first experiment, the retention of orally administered [14C]radiolabeled isotopes of both compounds in fifth-instar larvae of the beet armyworm was studied. Rate of excretion of both IGRs inS. exigua caterpillars was high, with a 50% excretion time of approximately 6 h after intake. In a second experiment, the transport of the compounds from prey to predator and their retention inside the predator were studied. Fifthinstar nymphs ofP. maculiventris were allowed to feed on caterpillars that had been given contaminated food. For both diflubenzuron and pyriproxyfen, more than 80% of the amount of radiolabel applied was recovered in consumed prey. Low levels of radioactivity (c. 3% of the applied amount of radiolabel) were also found in the fluid regurgitated by the prey larvae when attacked by the predatory bugs. Relatively small amounts of radiolabel (c. 8 and 15% of the amount orally applied to the prey for diflubenzuron and pyriproxyfen, respectively) were ingested byP. maculiventris nymphs when feeding on beet armyworm caterpillars. The data suggest that the predators did not use gut content as food. The pattern of excretion in nymphs ofP. maculiventris differed between compounds. For diflubenzuron, there was a drastic decrease of radioactivity inside the predator body of around 40% within the first 6 h and then the level of retained radiolabel remained stable at 3–4% up to 72 h. For pyriproxyfen, a slow decrease of radioactivity inside the body was observed and at 72 h only 2% of the applied quantity was detected. Results of this study are discussed in relation to the findings from previous studies on the toxicity of both IGRs toP. maculiventris.  相似文献   

6.
7.
In agroecosystems, parasitoids and predators may exert top-down regulation and predators for different reasons may avoid or give preference to parasitised prey, i.e., become an intraguild predator. The success of pest suppression with multiple natural enemies depends essentially on predator–prey dynamics and how this is affected by the interplay between predation and parasitism. We conducted a simple laboratory experiment to test whether predators distinguished parasitised prey from non-parasitised prey and to study how parasitism influenced predation. We used a host-parasitoid system, Spodoptera frugiperda and one of its generalist parasitoids, Campoletis flavicincta, and included two predators, the stinkbug Podisus nigrispinus and the earwig Euborellia annulipes. In the experiment, predators were offered a choice between non-parasitised and parasitised larvae. We observed how long it took for the predator to attack a larva, which prey was attacked first, and whether predators opted to consume the other prey after their initial attack. Our results suggest that, in general, female predators are less selective than males and predators are more likely to consume non-parasitised prey with this likelihood being directly proportional to the time taken until the first prey attack. We used statistical models to show that males opted to consume the other prey with a significantly higher probability if they attacked a parasitised larva first, while females did so with the same probability irrespective of which one they attacked first. These results highlight the importance of studies on predator–parasitoid interactions, as well as on coexistence mechanisms in agroecosystems. When parasitism mediates predator choice so that intraguild predation is avoided, natural enemy populations may be larger, thus increasing the probability of more successful biological control.  相似文献   

8.
Abstract. 1. Foraging behaviour and movement within and among host patches of the specialist parasitoid wasp Cotesia melitaearum (Braconidae) attacking the larvae of Melitaea cinxia (Nymphalidae) were studied in the field and in the laboratory.
2. In the field, female wasps aggregated in large host groups in the autumn and caused positive spatial density-dependent parasitism in the field. Wasps stayed longer with groups of pre-diapause caterpillars than with post-diapause caterpillars, but attacked them less frequently.
3. In the laboratory, wasps attacked larger larvae more readily than smaller larvae. Also in the laboratory, wasps exposed to larvae outside their protective webs showed differences in the rates at which they attacked larvae fed different diets, implicating host plant-derived chemicals as proximate cues for foraging wasps.
4. Mark–recapture studies indicated that there was a low rate of successful movement of wasps among groups of young larvae within a habitat patch in the autumn and no successful movement of wasps across non-habitat. In contrast, wasps moved frequently among groups of late-instar caterpillars in the spring.
5. Host caterpillars of different ages responded very differently to wasp attacks. Pre-diapause larvae remained in groups and used collective head-jerking behaviour to defend themselves, whereas post-diapause larvae dispersed away from the group immediately after being attacked.
6. Population and metapopulation level dynamics of the host–parasitoid interaction are discussed in light of these observations of the behaviour of individual wasps.  相似文献   

9.
When constraints on antipredator coloration shift over the course of development, it can be advantageous for animals to adopt different color strategies for each life stage. Many caterpillars in the genus Papilio exhibit unique ontogenetic color sequences: for example, early instars that masquerade as bird feces, with later instars possessing eyespots. I hypothesize that larvae abandon feces masquerade in favor of eyespots due to ontogenetic changes in signaler size. This ontogenetic pattern also occurs within broader seasonal shifts in background color and predator activity. I conducted predation experiments with artificial prey to determine how potential signaling constraints (specifically size and season) shape predation risk, and consequently the expression of ontogenetic color change in Papilio larvae. Seasonally, both predation and background greenness declined significantly from July to September, though there was little evidence that these patterns impacted the effectiveness of either color strategy. Caterpillar size and color strongly affected the attack rate of avian predators: attacks increased with prey size regardless of color, and eyespotted prey were attacked more than masquerading prey overall. These results may reflect a key size-mediated tradeoff between conspicuousness and intimidation in eyespotted prey, and raise questions about how interwoven aspects of behavior and signal environment might maintain the prevalence of large, eyespotted larvae in nature.  相似文献   

10.
The influence of natural enemies has led to the evolution of various predator avoidance strategies in herbivorous insects. Many caterpillars are exclusively active at night and rest during the day. It is widely assumed that nocturnal activity in caterpillars reduces their risk of falling prey to their natural enemies. To test this hypothesis, we compared predation pressure between day and night in tree‐fall gaps and closed‐canopy forest sites in an Amazonian primary lowland rainforest. Artificial clay caterpillars, showing camouflaged colouration (green), were exposed as potential prey to a natural predator community. Attacks were significantly more frequent during daytime and were reduced by about a quarter at night in tree‐fall gaps, and by a third in closed‐canopy forest sites. This supports the idea of time‐dependent activity in caterpillars as an antipredatory adaptation. Further, independent of the time of day, predation pressure on caterpillars was significantly higher in tree‐fall gaps compared to closed‐canopy forest habitats. Nearly all predation events were caused by arthropods, whereas birds played a negligible role. Across both habitat types and time scales, ants acted as major predator group, emphasising their important role in population control of herbivorous insects in lowland rainforest ecosystems. This is the first experimental study using artificial caterpillars to examine whether time‐scheduling of exposition might influence predation risk amongst undefended, solitary, free‐living lepidopteran larvae.  相似文献   

11.
  1. Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking.
  2. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times.
  3. Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium–large prey types. Attack rates for both predators peaked unimodally at intermediate predator–prey body mass ratios, while handling times generally shortened across increasing body mass ratios.
  4. We thus demonstrate effects of body size ratios on predator–prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator–prey participants.
  5. Considerations for intra‐ and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
  相似文献   

12.
Summary We examined how predation by vespid wasps,Polistes dominulus andP. fuscatus, affected the behavior, growth rate and survivorship of aggregated caterpillars ofHemileuca lucina (Saturniidae). Although these larvae can exhibit a variety of defense and escape behaviors, in general larvae reacted to wasp attacks by clinging to the hostplant. Neighboring larvae in the aggregation responded by leaving the feeding site and moving to the interior or base of the plant. To determine wheter wasp attack affected the behavior and growth of the caterpillars that escaped, a field experiment was conducted with treatments of: 1) larvae exposed to wasps, 2) larvae protected from wasps, and 3) larvae protected from wasps but with the attack of wasps simulated (=harassment). Over just one instar, protected larvae gained significantly more weight than the harassed larvae, which in turn weighed significantly more than the larvae that escaped the wasps. The behavior of attacked and harassed larvae differed from that of the protected larvae; the disturbed larvae often fed in smaller groups and in shaded portions of the plant where only mature leaves were available. A laboratory experiment showed that at 35° C (daytime temperature) larvae had significantly higher relative growth rates and significantly shorter instar duration than larvae reared at 25° C. Our results suggest that wasps, in addition to killing caterpillars, indirectly affect larval fitness by slowing larval growth, at least in part by forcing larvae into cooler microhabitats where leaves are of lower quality.  相似文献   

13.
When hungry salmon were offered a simulated (unattainable) swarm of krill with high central density, the density of the region first attacked increased with increasing attack readiness (measured as snout contacts). When allowed to capture krill in a range of prey densities, hungry salmon captured krill most successfully (in terms of capture/contacts) in the lowest density and less efficiently with increasing densities. However, salmon still captured a greater number of krill in a given time in high compared to low densities. When salmon in three different hunger states were exposed to a simulated swarm of krill, those with the lowest hunger level most often attacked the lowest prey densities first. Salmon with a high hunger level most often attacked the highest prey density first. Those fish with a moderate hunger level chose an intermediate prey density. This behaviour can be interpreted as a hunger-dependent feeding strategy. The ways in which swarming of the prey might influence capture by the predator are considered.  相似文献   

14.
Simon D. Pollard 《Oecologia》1988,76(3):475-476
Summary A number of studies on the feeding behaviour of sucking predators have estimated the weight of biomass the predator extracts from the prey by measuring the weight change occurring in the prey. This method does not consider that a proportion of the prey weight change is lost to the immediate environment. I examined the spider Diaea sp. feeding on the fruit fly Drosophila immigrans and found that the prey lost approximately 28% more weight than the predator gained. This difference was largely explained by water loss from the prey. My results suggest that water loss, which is not available to the predator, is an important part of prey weight loss. To avoid overestimating predator biomass gain it is necessary to measure the predator weight gain directly or take into account water loss as a component of prey weight change.  相似文献   

15.
Larvae of the muscid fly Limnophora riparia live in lake outlets and prey on other invertebrates living there. In experiments, we demonstrated that larvae prefer moss as a substratum, though they will bury themselves in any suitable material to avoid light. The substratum is used to anchor Limnophora larvae as they attack their prey. When given a choice of prey they preferred chironomid and black fly larvae to oligochaetes and psyehodid larvae. Larvae of the black fly Simulium noelleri were used in laboratory experiments to test the interaction of predator and prey. Limnophora larvae attacked black fly larvae of all sizes, but preferred small larvae, the body contents of which were often removed completely. Increasing prey or predator density did not affect this latter preference, though an increase in predator density, or a decrease in prey density, did cause the predator to take prey of medium size as well as small prey. Limnophora larvae showed the same size preference when attacking dead (freshly-killed) prey and they preferred to attack larvae rather than pupae when both were available. They did not attack black fly eggs.  相似文献   

16.
We analyzed the feeding preference of Cnesterodon decemmaculatus, a small‐bodied poecilid native from the Rio de la Plata and proximate Atlantic Basins in South America. This species has a wide distribution in Uruguayan water bodies but its effectiveness as a predator of mosquito larvae has not been tested. In laboratory trials, five aquatic invertebrates were offered simultaneously as potential prey to fish: Daphnia pulex (Cladocera), copepods, two different instars of mosquito larvae (Culex pipiens), and the 4th instar of Chironomidae larvae. Preference was measured by the Chesson's electivity index (α). In order to determine differences in prey preference according to fish size, individuals ranging from 9.5 mm to 35.3 mm were classified in three different body size classes: small, medium, and large. Small fish showed preference for copepods, while medium‐sized fish preferred the smallest mosquito larvae instars and Chironomidae larvae. We conclude that C. decemmaculatus is a zooplankton facultative‐feeder fish that prefers large‐bodied zooplankton but is a weak predator of mosquito larvae. Thus, the introduction of C. decemmaculatus as a biological‐control agent in natural environments is not an effective strategy.  相似文献   

17.
Preference tests using the hemipteran predator Eocanthecona furcellata Wolff showed that nymphs and adults showed a constant preference towards virus-infected Spodoptera litura larvae. Adults feeding on healthy larvae throughout their life handled and consumed their prey quickly as compared to those feeding on infected prey, the differences being significant. Developmental time, survival rate, pre-mating period, sex-ratio and incubation period of E. furcellata that were reared on experimental plants infested with healthy larvae of S. litura as lifetime prey for all stages (control), healthy larvae during nymphal stage and infected larvae for adult stage, infected larvae for nymphal and healthy larvae for adult stage and infected larvae as lifetime meal for all stages of E. furcellata did not vary significantly. However, a significant reduction in body weight, fecundity, longevity and percent egg hatchability was observed when E. furcellata were fed on infected larvae as lifetime meal. The results revealed that the virus-infected larvae, relative to healthy larvae, had significant effect on prey preference of predators, but feeding on virus-infected prey had no adverse effect on its field fitness except on lifetime meal, which may not hold true under field conditions.  相似文献   

18.
Ontogenetic changes in resource use are widespread in many fish species. This study investigated the feeding habits of whitefish (C. lavaretus L.) larvae in Lake Annecy (France) coupled with experimental behavioral studies in order to identify the underlying mechanisms of the ontogenetic shifts in the diet. The predatory behavior of wild larvae, and the escape responses of their zooplankton prey were both videorecorded in experimental tanks under controlled laboratory conditions. Ontogenetic diet patterns showed that young whitefish larvae have a preference for small cyclops, while older larvae selectively predate cladocerans. Our experimental observations showed that the capture success rate also varied in relation to ontogenetic development in fish. Young larvae were more successful in capturing small copepods, whereas old larvae were more successful in capturing Daphnia. In addition, the larvae were able to adjust their predatory behavior (speed, pursuit) according to the swimming pattern of the prey. These observations suggest that the selective predation on cladocerans observed in old larvae is the outcome of both active and passive choices depending on the escape swimming behavior of the prey, and handling time of the predator.  相似文献   

19.
A series of laboratory experiments investigated the diet and feeding behaviour of Phagocata vitta (Dugès). Its fundamental food niche comprises oligochaetes and chironomid larvae, in order of importance. Other arthropod groups, when wounded, are also eaten.Increasing prey density resulted in the ingestion rate increasing in a type 2 functional response curve, sensu Holling. Group feeding by triclads did not widen the food niche but did result in small triclads being more successful in obtaining a meal.When a range of size classes of prey were offered to various size classes of triclad, small triclads were found to take mainly small prey, whilst other sizes would take prey sizes in proportion to their presence in the mixture.Mucous traps do not appear to have an important role in the feeding biology of the triclad.  相似文献   

20.
Prey preference in stoneflies: a comparative analysis of prey vulnerability   总被引:2,自引:0,他引:2  
Summary Laboratory feeding trials were conducted with the predaceous stonefly Hesperoperla pacifica and a number of mayfly and dipteran prey species to investigate the effects of predator size, and prey size and morphology, on the predator's success. Observations under dim red light permitted estimation of encounter rate (E/min), attack propensity (A/E), capture success (C/A) and handling time (HT). For prey of a particular species and size, HT decreased log-linearly with increasing predator size. Across all prey categories, HT increased log-linearly with increasing values of the ratio prey dry wt/predator dry wt, and differences among species appeared to be small. Overall, capture success was low, but C/A was higher for dipterans than for mayflies, especially with large H. pacifica. Predator size affected C/A when prey fell within a certain size range, but was not a detectable influence with very small or very large prey. Values of A/E of near 10% typified many predatorprey combinations; however, ephemerellid mayflies suffered markedly fewer attacks, and values of A/E up to 30% were obtained with some species-size combinations. We estimated benefit to the predator first as prey wt ingested per unit time (dry wt/HT), and second by mutliplying the former term by capture success. Values increased with increasing size of the predator, and inclusion of the C/A term indicated that predators would obtain greater reward from small relative to large prey, and from dipterans relative to mayflies. Howerver, there was little evidence that attacks were biased toward more profitable prey. We compare the relative contributions of E/min, A/E and C/A to prey choice, and discuss their applicability to predation events in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号