首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Xyloglucan endo-transglycosylases (XETs) encoded by xyloglucan endo-transglycosylases/hydrolase (XTH) genes modify the xyloglucan-cellulose framework of plant cell walls, thereby regulating their expansion and strength. To evaluate the importance of XET in wood development, we studied xyloglucan dynamics and XTH gene expression in developing wood and modified XET activity in hybrid aspen (Populus tremula × tremuloides) by overexpressing PtxtXET16-34. We show that developmental modifications during xylem differentiation include changes from loosely to tightly bound forms of xyloglucan and increases in the abundance of fucosylated xyloglucan epitope recognized by the CCRC-M1 antibody. We found that at least 16 Populus XTH genes, all likely encoding XETs, are expressed in developing wood. Five genes were highly and ubiquitously expressed, whereas PtxtXET16-34 was expressed more weakly but specifically in developing wood. Transgenic up-regulation of XET activity induced changes in cell wall xyloglucan, but its effects were dependent on developmental stage. For instance, XET overexpression increased abundance of the CCRC-M1 epitope in cambial cells and xylem cells in early stages of differentiation but not in mature xylem. Correspondingly, an increase in tightly bound xyloglucan content was observed in primary-walled xylem but a decrease was seen in secondary-walled xylem. Thus, in young xylem cells, XET activity limits xyloglucan incorporation into the tightly bound wall network but removes it from cell walls in older cells. XET overexpression promoted vessel element growth but not fiber expansion. We suggest that the amount of nascent xyloglucan relative to XET is an important determinant of whether XET strengthens or loosens the cell wall.  相似文献   

3.
Mixed-linkage (1-->3,1-->4)-beta-d-glucan (MLG), a hemicellulose long thought to be confined to certain Poales, was recently also found in Equisetum; xyloglucan occurs in all land plants. We now report that Equisetum possesses MLG:xyloglucan endotransglucosylase (MXE), which is a unique enzyme that grafts MLG to xyloglucan oligosaccharides (e.g. the heptasaccharide XXXGol). MXE occurs in all Equisetum species tested (Equisetum arvense, Equisetum fluviatile, Equisetum hyemale, Equisetum scirpoides, Equisetum telmateia and Equisetum variegatum), sometimes exceeding xyloglucan endotransglucosylase (XET) activity. Charophytic algae, especially Coleochaete, also possess MXE, which may therefore have been a primordial feature of plant cell walls. However, MXE was negligible in XET-rich extracts from grasses, dicotyledons, ferns, Selaginella and bryophytes. This and the following four additional observations indicate that MXE activity is not the result of a conventional xyloglucan endotransglucosylase/hydrolase (XTH): (i) XET, but not MXE, activity correlates with the reaction rate on water-soluble cellulose acetate, hydroxyethylcellulose and carboxymethylcellulose, (ii) MXE and XET activities peak in old and young Equisetum stems, respectively, (iii) MXE has a higher affinity for XXXGol (K(m) approximately 4 microM) than any known XTH, (iv) MXE and XET activities differ in their oligosaccharide acceptor-substrate preferences. High-molecular-weight (M(r)) xyloglucan strongly competes with [(3)H]XXXGol as the acceptor-substrate of MXE, whereas MLG oligosaccharides are poor acceptor-substrates. Thus, MLG-to-xyloglucan grafting appears to be the favoured activity of MXE. In conclusion, Equisetum has evolved MLG plus MXE, potentially a unique cell wall remodelling mechanism. The prominence of MXE in mature stems suggests a strengthening/repairing role. We propose that cereals, which possess MLG but lack MXE, might be engineered to express this Equisetum enzyme, thereby enhancing the crop mechanical properties.  相似文献   

4.
Using combinations of different polysaccharides as glycosyl donors and of oligosaccharides fluorescently labeled by sulforhodamine (SR) as glycosyl acceptors, we screened for the presence of transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Besides xyloglucan endotransglycosylase/hydrolase (XTH/XET, EC 2.4.1.207) activity, which transfers xyloglucanosyl residues from xyloglucan (XG) to XG-derived oligosaccharides (XGOs), a glycosyl transfer from XG to SR-labeled cellooligosaccharides and laminarioligosaccharides has been detected. The XGOs also served as acceptors for the glycosyl transfer from soluble cellulose derivatives carboxymethyl cellulose and hydroxyethylcellulose. The effectivity of these polysaccharides as glycosyl donors for transfer to XG-derived octasaccharide [1-3H]XXLGol decreased in the order XG > HEC > CMC. Isoelectric focusing in polyacrylamide gels showed that bands corresponding to hetero-transglycosylase activities coincided with zones corresponding to XTH/XET. These results can be explained as due either to substrate non-specificity of certain isoenzymes of XTH/XET or to existence of enzymes catalyzing a hetero-transfer, that is the formation of covalent linkages between different types of carbohydrate polymers.  相似文献   

5.
Successful automatic self-pollination in flowering plants isdependent on the correct development of reproductive organs.In the stamen, the appropriate growth of the filament, whichlargely depends on the mechanical properties of the cell wall,is required to position the anther correctly close to the stigmaat the pollination stage. Xyloglucan endotransglucosylase/hydrolases(XTHs) are a family of enzymes that mediate the constructionand restructuring of xyloglucan cross-links, thereby controllingthe extensibility or mechanical properties of the cell wallin a wide variety of plant tissues. Our reverse genetic analysishas revealed that a loss-of-function mutation of an ArabidopsisXTH family gene, AtXTH28, led to a decrease in capability forself-pollination, probably due to inhibition of stamen filamentgrowth. Our results also suggest that the role of AtXTH28 inthe development of the stamen is not functionally redundantwith its closest paralog, AtXTH27. Thus, our finding indicatesthat AtXTH28 is specifically involved in the growth of stamenfilaments, and is required for successful automatic self-pollinationin certain flowers in Arabidopsis thaliana.  相似文献   

6.
Bean (Phaseolus vulgaris L.) cells have been habituated to grow in lethal concentrations of dichlobenil (DCB), a specific inhibitor of cellulose biosynthesis. Bean callus cells were successively cultured in increasing DCB concentrations up to 2 μM. The 2-μM DCB habituated cells were impoverished in cellulose and xyloglucan, had an increased xyloglucan endotransglucosylase (XET; EC 2.4.1.207) activity, together with an increased growth rate and a decreased molecular size of xyloglucan. However, the application of lethal concentrations of two different cellulose-biosynthesis inhibitors (DCB and isoxaben) for a short period of time produced little effect on XET activity and xyloglucan molecular size. We propose that the weakening of plant cell wall provoked by decrease in cellulose content might promote the xyloglucan tethers and increase the ability of xyloglucan to bind to cellulose in order to give rigidity to the wall.  相似文献   

7.
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall-modifying enzymes that align within three or four distinct phylogenetic subgroups. One explanation for this grouping is association with different enzymic modes of action, as XTHs can have xyloglucan endotransglucosylase (XET) or endohydrolase (XEH) activities. While Group 1 and 2 XTHs predominantly exhibit XET activity, to date the activity of only one member of Group 3 has been reported: nasturtium TmXH1, which has a highly specialized function and hydrolyses seed-storage xyloglucan rather than modifying cell wall structure. Tomato fruit ripening was selected as a model to test the hypothesis that preferential XEH activity might be a defining characteristic of Group 3 XTHs, which would be expressed during processes where net xyloglucan depolymerization occurs. Database searches identified 25 tomato XTHs, and one gene (SlXTH5) was of particular interest as it aligned within Group 3 and was expressed abundantly during ripening. Recombinant SlXTH5 protein acted primarily as a transglucosylase in vitro and depolymerized xyloglucan more rapidly in the presence than in the absence of xyloglucan oligosaccharides (XGOs), indicative of XET activity. Thus, there is no correlation between the XTH phylogenetic grouping and the preferential enzymic activities (XET or XEH) of the proteins in those groups. Similar analyses of SlXTH2, a Group 2 tomato XTH, and nasturtium seed TmXTH1 revealed a spectrum of modes of action, suggesting that all XTHs have the capacity to function in both modes. The biomechanical properties of plant walls were unaffected by incubation with SlXTH5, with or without XGOs, suggesting that XTHs do not represent primary cell wall-loosening agents. The possible roles of SlXTH5 in vivo are discussed.  相似文献   

8.
9.
10.
Gene expression in tension wood and bast fibres   总被引:1,自引:0,他引:1  
Tension wood is produced in the xylem of some angiosperm trees, such as poplar (Populus spp.), whereas bast fibers are phloem-derived cells best known from annual crops, such as flax (Linum usitatissimum L.). Despite their different origins, secondary walls of both tension wood and bast fibers share distinctive properties, including an abundance of axially oriented, crystalline cellulose produced in a distinctive gelatinous-type layer. Because of these unique properties, tension wood and phloem fibers have separately been the subject of at least nine previously published gene or protein profiling studies. Here we review these experiments with a focus on those genes, whose expression distinguishes both tension wood and bast fibers from the more predominant types of xylem found elsewhere in the stem. Notable among these is an evolutionarily distinctive group of fasciclin-like arabinogalactan proteins (FLA) and a putative rhamnogalacturonan lyase.  相似文献   

11.
The paper describes a sensitive and rapid zymogram technique for detection of transglycosylating activity (XET) of xyloglucan endotransglycosylase/hydrolase (XTH; EC 2.4.1.207) in polyacrylamide isoelectric focusing gels. After the electrophoresis, the separating gel was overlaid and incubated with an agarose detection gel containing XET substrates: tamarind-seed xyloglucan as the glycosyl donor and sulphorhodamine-labeled xyloglucan-derived oligosaccharides (XGO-SRs) as the glycosyl acceptors. The transglycosylation catalyzed by XTH caused incorporation of the fluorescent label into the high-M(r) polysaccharide. Selective removal of unreacted XGO-SRs from the agarose replicas by washing with organic solvents revealed the zones corresponding to XET activity as bright pink fluorescent spots under UV-light. The method appears suitable for a number of purposes such as analysis of the isoenzyme composition of XTHs with XET activity in crude extracts from various plants and plant organs, monitoring the enzyme expression at various stages of plant development and/or for checking enzyme purity in the course of its isolation procedure.  相似文献   

12.
13.
BACKGROUND AND AIMS: In angiosperms xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is involved in reorganization of the cell wall during growth and development. The location of oligo-xyloglucan transglucosylation activity and the presence of XTH expressed sequence tags (ESTs) in the earliest diverging extant plants, i.e. in bryophytes and algae, down to the Phaeophyta was examined. The results provide information on the presence of an XET growth mechanism in bryophytes and algae and contribute to the understanding of the evolution of cell wall elongation in general. METHODS: Representatives of the different plant lineages were pressed onto an XET test paper and assayed. XET or XET-related activity was visualized as the incorporation of fluorescent signal. The Physcomitrella genome database was screened for the presence of XTHs. In addition, using the 3' RACE technique searches were made for the presence of possible XTH ESTs in the Charophyta. KEY RESULTS: XET activity was found in the three major divisions of bryophytes at sites corresponding to growing regions. In the Physcomitrella genome two putative XTH-encoding cDNA sequences were identified that contain all domains crucial for XET activity. Furthermore, XET activity was located at the sites of growth in Chara (Charophyta) and Ulva (Chlorophyta) and a putative XTH ancestral enzyme in Chara was identified. No XET activity was identified in the Rhodophyta or Phaeophyta. CONCLUSIONS: XET activity was shown to be present in all major groups of green plants. These data suggest that an XET-related growth mechanism originated before the evolutionary divergence of the Chlorobionta and open new insights in the evolution of the mechanisms of primary cell wall expansion.  相似文献   

14.

Background and Aims

Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of β-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized.

Methods

This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19.

Key Results

All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana.

Conclusions

OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.  相似文献   

15.
Dicot wood is mainly composed of cellulose, lignin and glucuronoxylan (GX). Although the biosynthetic genes for cellulose and lignin have been studied intensively, little is known about the genes involved in the biosynthesis of GX during wood formation. Here, we report the molecular characterization of two genes, PoGT8D and PoGT43B, which encode putative glycosyltransferases, in the hybrid poplar Populus alba x tremula. The predicted amino acid sequences of PoGT8D and PoGT43B exhibit 89 and 75% similarity to the Arabidopsis thaliana IRREGULAR XYLEM8 (IRX8) and IRX9, respectively, both of which have been shown to be required for GX biosynthesis. The PoGT8D and PoGT43B genes were found to be expressed in cells undergoing secondary wall thickening, including the primary xylem, secondary xylem and phloem fibers in stems, and the secondary xylem in roots. Both PoGT8D and PoGT43B are predicted to be type II membrane proteins and shown to be targeted to Golgi. Overexpression of PoGT43B in the irx9 mutant was able to rescue the defects in plant size and secondary wall thickness and partially restore the xylose content. Taken together, our results demonstrate that PoGT8D and PoGT43B are Golgi-localized, secondary wall-associated proteins, and PoGT43B is a functional ortholog of IRX9 involved in GX biosynthesis during wood formation.  相似文献   

16.
17.
Liu YB  Lu SM  Zhang JF  Liu S  Lu YT 《Planta》2007,226(6):1547-1560
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of enzymes that mediate the construction and restructure of the cellulose/xyloglucan framework by splitting and reconnecting xyloglucan molecule cross-linking among cellulose microfibrils. Remodification of cellulose microfibrils within cell-wall matrices is realized to be one of the most critical steps in the regulation of cells expansion in plants. Thirty-three XTH genes have been found in Arabidopsis thaliana but their roles remain unclear. AtXTH21 (At2g18800), an Arabidopsis XTH gene that mainly expresses in root and flower, exhibits different expression profiles from other XTH members under hormone treatment. We examined loss-of-function mutants using T-DNA insertion lines and overexpression lines and found that the AtXTH21 gene played a principal role in the growth of the primary roots by altering the deposition of cellulose and the elongation of cell wall.  相似文献   

18.
Five forms of xyloglucan endotransglycosylase/hydrolase (XTH) differing in their isoelectric points (pI) were detected in crude extracts from germinating nasturtium seeds. Without further fractionation, all five forms behaved as typical endotransglycosylases since they exhibited only transglycosylating (XET) activity and no xyloglucan-hydrolysing (XEH) activity. They all were glycoproteins with identical molecular mass, and deglycosylation led to a decrease in molecular mass from approximately 29 to 26.5 kDa. The major enzyme form having pI 6.3, temporarily designated as TmXET(6.3), was isolated and characterized. Molecular and biochemical properties of TmXET(6.3) confirmed its distinction from the XTHs described previously from nasturtium. The enzyme exhibited broad substrate specificity by transferring xyloglucan or hydroxyethylcellulose fragments not only to oligoxyloglucosides and cello-oligosaccharides but also to oligosaccharides derived from β-(1,4)-d-glucuronoxylan, β-(1,6)-d-glucan, mixed-linkage β-(1,3; 1,4)-d-glucan and at a relatively low rate also to β-(1,3)-gluco-oligosaccharides. The transglycosylating activity with xyloglucan as donor and cello-oligosaccharides as acceptors represented 4.6%, with laminarioligosaccharides 0.23%, with mixed-linkage β-(1,3; 1,4)-d-gluco-oligosaccharides 2.06%, with β-(1,4)-d-glucuronoxylo-oligosaccharides 0.31% and with β-(1,6)-d-gluco-oligosaccharides 0.69% of that determined with xyloglucan oligosaccharides as acceptors. Based on the sequence homology of tryptic fragments with the sequences of known XTHs, the TmXET(6.3) was classified into group II of the XTH phylogeny of glycoside hydrolase family GH16.  相似文献   

19.
In nature, angiosperm trees develop tension wood on the upper side of their leaning trunks and drooping branches. Development of tension wood is one of the straightening mechanisms by which trees counteract leaning or bending of stem and resume upward growth. Tension wood is characterized by the development of a highly crystalline cellulose-enriched gelatinous layer next to the lumen of the tension wood fibers. Thus experimental induction of tension wood provides a system to understand the process of cellulose biosynthesis in trees. Since KORRIGAN endoglucanases (KOR) appear to play an important role in cellulose biosynthesis in Arabidopsis, we cloned PtrKOR, a full-length KOR cDNA from aspen xylem. Using RT-PCR, in situ hybridization, and tissue-print assays, we show that PtrKOR gene expression is significantly elevated on the upper side of the bent aspen stem in response to tension stress while KOR expression is significantly suppressed on the opposite side experiencing compression stress. Moreover, three previously reported aspen cellulose synthase genes, namely, PtrCesA1, PtrCesA2, and PtrCesA3 that are closely associated with secondary cell wall development in the xylem cells exhibited similar tension stress-responsive behavior. Our results suggest that coexpression of these four proteins is important for the biosynthesis of highly crystalline cellulose typically present in tension wood fibers. Their simultaneous genetic manipulation may lead to industrially relevant improvement of cellulose in transgenic crops and trees.Suchita Bhandari and Takeshi Fujino contributed equally to this research.  相似文献   

20.
Xyloglucan endotransglucosylase activity loosens a plant cell wall   总被引:6,自引:0,他引:6  
BACKGROUND AND AIMS: Plant cells undergo cell expansion when a temporary imbalance between the hydraulic pressure of the vacuole and the extensibility of the cell wall makes the cell volume increase dramatically. The primary cell walls of most seed plants consist of cellulose microfibrils tethered mainly by xyloglucans and embedded in a highly hydrated pectin matrix. During cell expansion the wall stress is decreased by the highly controlled rearrangement of the load-bearing tethers in the wall so that the microfibrils can move relative to each other. Here the effect was studied of a purified recombinant xyloglucan endotransglucosylase/hydrolase (XTH) on the extension of isolated cell walls. METHODS: The epidermis of growing onion (Allium cepa) bulb scales is a one-cell-thick model tissue that is structurally and mechanically highly anisotropic. In constant load experiments, the effect of purified recombinant XTH proteins of Selaginella kraussiana on the extension of isolated onion epidermis was recorded. KEY RESULTS: Fluorescent xyloglucan endotransglucosylase (XET) assays demonstrate that exogeneous XTH can act on isolated onion epidermis cell walls. Furthermore, cell wall extension was significantly increased upon addition of XTH to the isolated epidermis, but only transverse to the net orientation of cellulose microfibrils. CONCLUSIONS: The results provide evidence that XTHs can act as cell wall-loosening enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号