首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Mississippi river, the Fort Peck and Garrison reaches of the upper Missouri river, the Missouri National Recreational river (MNRR), the channelized lower Missouri river, and the Ohio river. Data were obtained from field sampling, air photo interpretation, and U.S. Geological Survey (USGS) hydrologic records. Habitat and hydrology attributes were incorporated into four habitat indices (channel complexity, substrate quality, littoral cover, and riparian condition) and one hydrology index. Construction of habitat indices for these very large rivers was complicated by a lack of previous research demonstrating methods for choosing and weighting the metrics used to compose these indices. Many habitat metrics used to assess habitat quality in small rivers proved irrelevant or impractical for assessing habitat quality in the upper Mississippi, Missouri, and Ohio rivers. In addition, these very large rivers, unlike smaller streams, were subject to physical and hydrological alterations due to channelization, revetment, levees, and dams. Because of the lack of proven indicators of habitat condition in very large rivers, we began with a large number of measures of natural and anthropogenic stress, eliminating only those metrics that failed tests of range, redundancy, and correlation with longitudinal position along the river. The lock and low-head dam sequences on the impounded Mississippi and Ohio influenced both hydrological patterns and the resident fish community, with conditions recovering with increased distance below dams, until hydrology was once again altered by impoundment from a downriver dam. Channel complexity and hydrology indices displayed the highest correlations with a multimetric fish index, possibly because these indices integrated habitat condition over a larger scale than the transect- and site-scaled littoral cover and riparian indices. Data limitations prevented the calculation of a littoral cover and a channel complexity index for the upper Missouri and Ohio rivers, respectively.  相似文献   

2.
三峡水库河流生境评价指标体系构建及应用   总被引:3,自引:0,他引:3  
陈淼  苏晓磊  党成强  高婷  黄慧敏  董蓉  陶建平 《生态学报》2017,37(24):8433-8444
三峡水库建成蓄水后,库区支流因水位调度导致河流生境发生了剧烈的变化,消落带的形成使库区河流具有同自然河流截然不同的河流生境,新形势下库区河流生境评价十分必要。国内外现有的评价指标体系及评价方法不能够很好地适应这种特殊生境状况,急需建立或改进并形成新的评价指标体系和评价方法。基于此,分析了大量国内外河流生境评价方法,根据大型水库影响下的库区河流的生态环境特点,构建了包括水文情势、河流形态和河岸带生境3个方面18个指标的库区河流生境评价指标体系,并利用层次分析法(主观赋权法)和熵值法(客观赋权法)结合组合赋权法计算得到了各指标权重。使用新建立的指标体系和方法,以三峡库区支流东溪河、黄金河、汝溪河为例,进行河流生境质量评价发现,52.6%的样点河流生境质量处于优等或良好等级;42.1%为一般等级;5.3%为较差等级;没有最差等级的样点。结果表明,该评价指标体系适合库区支流河流生境状况的特殊性,得到的评价结果能较直观的反应河流生境状况,且操作便捷,数据易获得,具有较强的科学性和可操作性。  相似文献   

3.
Aquatic biodiversity faces increasing threats from climate change, escalating exploitation of water and land use intensification. Loss of vegetation in catchments (= watersheds) has been identified as a substantial problem for many river basins, and there is an urgent need to better understand how climate change may interact with changes in catchment vegetation to influence the ecological condition of freshwater ecosystems. We used 20 years of biological monitoring data from Victoria, southeastern Australia, to explore the influences of catchment vegetation and climate on stream macroinvertebrate assemblages. Southeastern Australia experienced a severe drought from 1997 to 2009, with reductions of stream flows >50% in some areas. The prolonged drying substantially altered macroinvertebrate assemblages, with reduced prevalence of many flow‐dependent taxa and increased prevalence of taxa that are tolerant of low‐flow conditions and poor water quality. Stream condition, as assessed by several commonly used macroinvertebrate indices, was consistently better in reaches with extensive native tree cover in upstream catchments. Prolonged drought apparently caused similar absolute declines in macroinvertebrate condition indices regardless of vegetation cover, but streams with intact catchment and riparian vegetation started in better condition and remained so throughout the drought. The largest positive effects of catchment tree cover on both water quality and macroinvertebrate assemblages occurred above a threshold of ca. 60% areal tree cover in upstream catchments and in higher rainfall areas. Riparian tree cover also had positive effects on macroinvertebrate assemblages, especially in warmer catchments. Our results suggest that the benefits of extensive tree cover via improved water quality and in‐channel habitat persist during drought and show the potential for vegetation management to reduce negative impacts of climatic extremes for aquatic ecosystems.  相似文献   

4.
An extensive survey of tropical rivers, conducted during 2009–2012 throughout Zambia, collected 151 samples of benthic macroinvertebrates, located on 95 rivers in six of the nine freshwater ecoregions. Associated data for physico-chemistry, human activities and ecosystem stressors were collected. Data were used to develop and test a new Rapid Bioassessment Protocol (the Zambian Invertebrate Scoring System: ZISS) for assessment of water quality and river condition in both wadeable and non-wadeable rivers. ZISS, which is based on the South African Scoring System (SASS), includes a total of 85 taxa, of which 79 are shared with SASS. Assignment of sensitivity weightings to new ZISS taxa was based on sensitivity weightings of closely related SASS families; known life-history modes and anatomical adaptations; and correlation of occurrence to impact ratings. The ability of the ZISS to measure impacts was assessed by determining the relationships between ZISS metrics and impacts. ZISS data for the Kafue River demonstrated the efficacy of the ZISS for detecting moderate to high impacts on water quality and river condition. ZISS represents a major step in developing a user-friendly, widely applicable, macroinvertebrate-based biotic index, which can provide easily interpretable assessments of river condition for southern tropical African rivers.  相似文献   

5.
A survey of 96 sites in a range of riparian habitats in the catchments of five rivers during June–August 1998 used the bait tube method to investigate the geographical distribution and habitat occurrence of Water Shrews (Neomys fodiens) in the Weald of South‐East England. Water Shrews were found at 42% of sites, and were widely distributed in all river catchments except the Mole. They occurred in many riparian habitats, including rivers, streams, canals and ditches, with a range of physical and biotic characteristics. There were no signs of habitat avoidance in response to human disturbance but Water Shrews were absent from the river catchment with lowest water quality. Logistic regression analysis was used to model the effect of habitat variables on the presence of Water Shrews, with current speed, water depth, bank incline and bank‐side vegetation identified as important variables. Fast‐flowing shallow waters had a significant positive effect on their presence, whereas scarce herbaceous vegetation and a bank of low incline had a significant negative effect. These habitat variables appear to be reliable indicators of the probability of finding Water Shrews at a particular site, and have implications for habitat management and conservation.  相似文献   

6.
1. Evaluations of stream geomorphic condition may increase our understanding of the composite effects of human‐induced habitat change on fish communities. Using systematic sampling of 44 reaches spread across 26 rivers in Vermont from 2002 through 2004, we tested the hypothesis that stream reaches in reference geomorphic condition would support fish assemblages that differed in diversity and productivity from fish communities found in reaches of poorer geomorphic condition. 2. At each study reach, we sampled the fish community, identified the morphological unit according to common stream classification systems and then evaluated the extent of deviation from reference geomorphic condition using a regionally adapted geomorphic assessment methodology. 3. We used principal component analysis (PCA) and linear regression to build exploratory models linking stream geomorphic condition to fish community characteristics. 4. Our results suggest that geomorphic condition significantly influences fish community diversity, productivity and condition. Geomorphic condition was a significant factor in all of our fish community models. In conjunction with additional reach characteristics, geomorphic condition explained up to 31% of the total variance observed in models for species diversity of fish communities, 44% of the variance in assemblage biomass and 45% of the variance in a regional index of biotic integrity. 5. Our work builds on single‐species evidence that geomorphic characteristics represent important local‐scale fish‐habitat variables, showing that stream geomorphic condition is a dominant factor affecting entire fish communities. Our results enhance our understanding of the hierarchy of factors that influences fish community diversity and organisation and support the use of geomorphic condition assessments in stream management.  相似文献   

7.
8.
1. With the aim of determining whether patterns of variation in macroinvertebrate assemblage composition across the hierarchy of spatial units in two lowland rivers changed during a supra‐seasonal drought (1997–2000), patterns during a reduced flow season (1999–2000) were compared with those during two preceding higher flow seasons (1997–98 and 1998–99) using samples from the Glenelg and Wimmera Rivers, two lowland regulated rivers in western Victoria, Australia. 2. We hypothesised that (i) differences between reaches would increase during the reduced flow season owing to decreased hydrological connectivity, (ii) differences between the habitats would decrease because the cessation of flow in run habitats should cause them to become more similar to pool habitats and (iii) differences between microhabitats would also decrease because of reduced scour of inorganic substrata and large woody debris. 3. During each season, macroinvertebrates were sampled from three microhabitats (sand/silt substratum, large woody debris and macrophytes) that were hierarchically nested within a run or pool habitat and within one of three reaches within each river. A range of physico‐chemical variables was also sampled. 4. Analysis of similarity showed that assemblage composition in both rivers during the higher flow seasons differed more among microhabitats than other spatial units. However, during the reduced flow season, assemblage composition in the Wimmera River differed most among reaches. This change in pattern was associated with the combined effects of decreased flow and longitudinal increases in salinity. In contrast, the fauna of the Glenelg River appeared to be resistant to the effects of the reduced flow season, owing to limited decline in water quality despite lower river discharge. 5. As salinisation and poor water quality in the Wimmera River result from human activities in the catchment, these results support the idea that human impacts on rivers can change macroinvertebrate scaling patterns and exacerbate the effects of drought beyond the tolerance of many riverine macroinvertebrates.  相似文献   

9.
This paper establishes a framework within which a rapid and pragmatic assessment of river ecosystems can be undertaken at a broad, subcontinental scale, highlighting some implications for achieving conservation of river biodiversity in water‐limited countries. The status of river ecosystems associated with main rivers in South Africa was assessed based on the extent to which each ecosystem had been altered from its natural condition. This requires consistent data on river integrity for the entire country, which was only available for main rivers; tributaries were thus excluded from the analyses. The state of main river ecosystems in South Africa is dire: 84% of the ecosystems are threatened, with a disturbing 54% critically endangered, 18% endangered, and 12% vulnerable. Protection levels were measured as the proportion of conservation target achieved within protected areas, where the conservation target was set as 20% of the total length of each river ecosystem. Sixteen of the 112 main river ecosystems are moderately to well represented within protected areas; the majority of the ecosystems have very low levels of representation, or are not represented at all within protected areas. Only 50% of rivers within protected areas are intact, but this is a higher proportion compared to rivers outside (28%), providing some of the first quantitative data on the positive role protected areas can play in conserving river ecosystems. This is also the first assessment of river ecosystems in South Africa to apply a similar approach to parallel assessments of terrestrial, marine, and estuarine ecosystems, and it revealed that main river ecosystems are in a critical state, far worse than terrestrial ecosystems. Ecosystem status is likely to differ with the inclusion of tributaries, since options may well exist for conserving critically endangered ecosystems in intact tributaries, which are generally less regulated than main rivers. This study highlights the importance of healthy tributaries for achieving river conservation targets, and the need for managing main rivers as conduits across the landscape to support ecological processes that depend on connectivity. We also highlight the need for a paradigm shift in the way protected areas are designated, as well as the need for integrated river basin management plans to include explicit conservation visions, targets, and strategies to ensure the conservation of freshwater ecosystems and the services they provide.  相似文献   

10.
1. Within a few decades of European disturbance in the mid-nineteenth century, river character and behaviour were transformed in Bega catchment on the south coast of New South Wales, Australia. Ecological impacts of geomorphic changes to river structure and function throughout the catchment are assessed. 2. At the time of European settlement, many water courses in Bega catchment were discontinuous, with extensive swamps along middle and upper courses. Following a series of direct and indirect human impacts, channels became continuous in the middle and upper parts of the catchment, as extensive valley fills at the base of the escarpment were incised. Along the lowland plain, the channel widened by over 300%, fundamentally altering the relationship between the channel and its adjacent floodplain. 3. Geomorphic changes to river structure have modified habitat availability throughout Bega catchment. The impacts have been least pronounced in headwater streams, but have been dramatic along virtually all river courses beyond the base of the escarpment. 4. Changes in river structure have been directly related to altered riparian vegetation cover, and vice versa. As a consequence of changes to river structure, bed substrate calibre (and supply volume/rate) has been modified along most streams. 5. A series of indirect, secondary impacts have modified habitat viability along river courses. Lateral, longitudinal and vertical linkages within the river system have been altered, affecting the transfer of water, sediment, organic matter, nutrients and other biotic interactions. 6. These direct and indirect consequences of geomorphic changes in river structure suggest that ecologists need to adopt a longer-term, catchment-framed view of human disturbance to river ecosystems. 7. Effective, sustainable ecological rehabilitation of river courses is dependent on an understanding of geomorphic processes and determination of appropriate river structure at differing positions in catchments.  相似文献   

11.
The aim of this study was to assess and compare the water quality of the Gwebi and Mukuvisi Rivers, on the basis of selected physicochemical variables and macroinvertebrate community structure. Five sites where selected on both rivers and these were sampled on three separate occasions between January and July of 1998. The water variables measured were the concentrations of iron, chromium, zinc, lead, copper, manganese, chlorides, fluorides, sulphates, total phosphates, nitrates, ammonia, total dissolved salts, dissolved oxygen, biological oxygen demand, as well as pH, conductivity, temperature, water surface velocity and discharge. The concentration of most of the chemical variables was relatively similar along the course of the Gwebi River, but there were drastic increases in the levels of iron, chromium, copper, zinc, chlorides, fluorides, sulphates, and ammonia along the Mukuvisi River. The two rivers were different with respect to the physicochemical variables, with the exception of the first site on the Mukuvisi, which was similar to sites on the Gwebi River. This was because of the differences in the levels of human activities on the two rivers. Industrial, sewage and domestic pollution has had an adverse effect on the water quality of the Mukuvisi River. There was a sharp decline in the number of macroinvertebrate taxa along the Mukuvisi River. The lower reaches of the river where dominated by oligochaetes and Chironimidae larvae. Sample score classification of water quality based on the South African Scoring System Version 4 (SASS4) showed that most of the Mukuvisi river had poor quality water quality, whilst much of the Gwebi River had fair quality water. The HABS1 habitat assessment index was used to assess habitat quality at each site. Although much of the Mukuvisi recorded fair to good habitat scores and had generally higher habitat scores than sites on the Gwebi, the SASS scores were generally lower compared to those along the Gwebi. The sample scores and average score per taxon (ASPT) of the SASS4 showed that the Mukuvisi River was of much lower quality than the Gwebi. Both the sample score and ASPT were negatively and significantly (p<0.05) correlated to most of the physicochemical variables. The water quality variables accounted for 61.1% and 59.0% of the differences in the sample score and ASPT respectively. There was a marginal decrease in the Margalef and Shannon indices along the Gwebi River, but the Simpson's index remained relatively constant. Along the Mukuvisi River, there was a clear and distinct decrease in the magnitude of all three diversity indices, indicating decreasing macroinvertebrate community structure. The change in water physicochemical variables accounted for 61.3%, 69.2% and 87.2% of the changes in the Margalef, Shannon and Simpson's index respectively. The study provides evidence that the changes in macroinvertebrate community structure along the Mukuvisi River is due to decline in the water quality. On the Gwebi, water quality is not the main factor determining macroinvertebrate community structure.  相似文献   

12.
13.
河流生境是水生生物赖以生存的物理、化学和生物环境的综合体, 是河流生态系统的重要组成部分。河流生境评价有助于掌握河流的生态健康状况, 识别河流退化的原因, 为河流的生态修复提供依据。文章梳理总结了20世纪80年代至2018年文献中报道的全球范围内河流生境评估的方法, 然后根据每种方法的侧重点和目标, 将它们分为预测模型法和多指标综合评估法两种类型, 并比较了它们各自的优势和不足。预测模型法适于长期的生境动态监测, 但该方法需要以自然无干扰的河流为参照, 并且需要大量历史数据, 统一评估不易实现; 多指标综合评估法评估相对快速方便, 但评估过程复杂, 且评价标准不一, 结果有一定的局限性。这些方法的适用范围从中小型的可涉水河流到较大的不可涉水河流, 但适用于大型不可涉水河流的生境评估方法和案例非常有限。通过分类整理, 发现我国河流生境评估方法多是参考国外几种常用的河流评估方法, 种类单一, 而且多是针对个别河流, 并且未对这些河流所在的流域的生境状况进行深入研究, 广适性较差。因此, 文章从以下几个方面对我国河流生境评估体系的发展提出几点建议: (1)确定科学和标准化的评分指标, 因地制宜, 以满足不同河流特征; (2)扩大评估范围, 从流域和景观尺度开展生境监测, 关注全流域的健康状况; (3)扩大时间尺度, 建立模型, 进行长期的动态评估; (4)鼓励政府宏观规划, 促进不同管理部门间的合作, 整合不同地区的河流生境数据并建立国家尺度的河流生境大数据库, 以实现我国河流生态健康的维护和流域的可持续发展。  相似文献   

14.
王强  袁兴中  刘红  庞旭  王志坚  张耀光 《生态学报》2014,34(6):1548-1558
河流生境是河流生态系统的重要组成部分,是河流生物赖以生存的基础。以位于三峡库区腹心区域的典型山区河流东河为研究对象,采用河流生境调查(RHS)方法调查河流生境,选择河流生境质量评价指数(HQA)、河流生境退化指数(HMS)评估河流生境现状,分析生境质量和人为干扰的空间分布规律。结果表明,51个河段的HQA值介于24—66之间。29.4%河段的HQA为优,29.4%为良,23.5%为中,9.8%为较差,7.8%为差。从HMS看,7.8%的河段保持较自然状态,19.6%受到轻微的破坏,41.2%退化明显,27.5%退化严重,3.9%受到剧烈破坏。HQA与HMS存在显著的负相关关系。东河上、中、下游河段的HQA无明显差异,但HMS差异显著。从干扰来源看,东河上游和中游河流生境主要受引水式小水电、沿河公路、河道采砂影响。东河下游河流生境受高强度的土地开发(农业用地、建设用地),河道采砂,河堤、排污管、桥梁等水工构筑物的修建和三峡水库水位的波动影响。RHS评价结果能较直观地反映河流生境状况,以及导致河流生境质量衰退的原因。  相似文献   

15.
快速城市化背景下,太湖流域城市河流水环境与生态功能退化问题日益突出,系统开展城市河流生境评价尤为重要。本研究参考和修正了英国城市河流调查评价体系,基于太湖流域城市河流特点,构建了太湖流域城市河段生境质量指数(SHQI)评价体系,分析太湖流域城市河流生境现状及空间差异。结果表明: 50 个河段的SHQI值介于8~21,3个河段的SHQI值为好,6个为较好,27个为一般,9个为较差,5个为差。太湖流域城市河流生境中植被指数情况较好,物理生境、材质指数情况较差。生境总体状况在空间上表现为镇江>湖州>杭州>嘉兴>苏州>无锡>常州,各城市的物理生境、材质指数与污染指数存在显著差异。干流河段与支流河段的SHQI值无显著差异,但干流河段与支流河段的材质指数和污染指数差异显著。本研究构建的评价体系较好地反映了太湖流域城市河流生境现状,可为城市河流生态修复工作提供参考。  相似文献   

16.
  • 1 Despite significant concern about drought impacts in Australia, there have been no broad‐scale studies of drought effects on river health. A severe and prolonged drought has been acting on many streams in south eastern Australia over the past decade. EPA Victoria has undertaken rapid bioassessment (RBA) of over 250 stream reference sites since 1990, providing an opportunity for a before‐after‐control‐impact investigation of drought related changes to macroinvertebrate indices and water quality. This study uses data from 1990 to 2004 to critically evaluate the effectiveness of using RBA methods and indices, which were designed for assessment of human impacts, for monitoring streams during drought.
  • 2 Reference stream sites across Victoria (those with minimal anthropogenic disturbances and repeatedly sampled) were classified as being ‘in drought’ or ‘not in drought’ using the Bureau of Meteorology’s rainfall deficiency definition. Four biological indices (SIGNAL, EPT, Family Richness and AUSRIVAS) were calculated for combined autumn and spring samples for edge and riffle habitats for the selected sites.
  • 3 General linear models and paired t‐tests were used to detect drought related changes to index and water quality values at state‐wide and bioregional scales. Changes in taxa constancy were examined to determine which taxa were sensitive to or benefited from drought conditions. Frequency of site failure against biological objectives specified in the State Environment Protection Policy (Waters of Victoria) (herein termed ‘SEPP WoV’) before and during drought was also examined to detect changes in a management context.
  • 4 Few significant changes in index values were detected for riffle habitat samples. Rates of failure against biological objectives were similar before and during drought for riffle samples. In contrast, edge habitat AUSRIVAS and SIGNAL scores were significantly reduced at the state‐wide scale and most indices showed significant declines in the lower altitude forests, and foothills and coastal plains bioregions.
  • 5 Generally, more pollution tolerant, lentic taxa replaced sensitive and flow‐requiring taxa in edge samples during drought. In contrast, there were few reductions in the taxa of riffle samples during drought. However, many pool preferring, but pollution sensitive taxa occurred more frequently in riffle areas. Hence, the riffle community began to resemble that of pools and edges. This was attributed to decreased flow and increased ‘lentic’ habitat opportunities in riffles.
  • 6 Detection of a drought effect was confined to the edge habitat and site failure could be assigned to drought and anthropogenic impacts, in conjunction or alone. The riffle sampling protocol was resistant to detection of drought effects as samples were only taken when sufficient water was present within this habitat. Therefore, biological changes at sites not meeting policy objectives for riffle habitats can be attributed to anthropogenic rather than drought impacts.
  相似文献   

17.
Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio rivers, Midwest USA. In 2004 and 2005, benthic macroinvertebrates, water chemistry, and habitat data were collected from randomly selected sites on each of the St. Croix, Wisconsin, Minnesota, Scioto, Wabash, and Illinois rivers. We first identified the human disturbance gradient using principal components analysis (PCA) of abiotic data. From the PCA, least disturbed sites showed strong separation from stressed sites along a gradient contrasting high water clarity, canopy cover, habitat scores, and plant-based substrates at one end and higher conductivity and nutrient concentrations at the other. Evaluation of 97 benthic metrics identified those with good range, responsiveness, and relative scope of impairment, as well as redundancies with other metrics. The final index was composed of Diptera taxa richness, EPT taxa richness, Coleoptera taxa richness, percent oligochaete and leech taxa, percent collector-filterer individuals, predator taxa richness, percent burrower taxa, tolerant taxa richness, and percent facultative individuals. Each of the selected metrics was scored using upper and lower thresholds based on all sites, and averaging across the nine metric scores, we obtained the Non-wadeable Macroinvertebrate Assemblage Condition Index (NMACI). The NMACI showed a strong response to disturbance using a validation data set and was highly correlated with non-metric multidimensional scaling (NMDS) ordination axes of benthic taxa. The cumulative distribution function of index scores for each river showed qualitative differences in condition among rivers. NMACI scores were highest for the federally protected St. Croix River and lowest for the Illinois River. Other rivers were intermediate and generally reflected the mixture of land use types within individual basins. Use of regional reference sites, though setting a high level of expectation, provides a valuable frame of reference for the potential of large river benthic communities that will aid management and restoration efforts.  相似文献   

18.
Are alien fish a reliable indicator of river health?   总被引:10,自引:0,他引:10  
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south‐eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south‐eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in‐stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable ‘first cut’ indicator of river health.  相似文献   

19.
太湖流域宜兴片河流生境质量评价   总被引:7,自引:0,他引:7  
建立包含河道生境、河岸生境和滨岸带生境3方面共10项的河流生境质量评价指标体系,对太湖流域宜兴片42个样点进行生境评价及空间差异比较,分析不同土地利用类型下河流生境各参数的差异性,探讨河流生境质量指数与富营养化综合指数的相关关系。结果表明:河流生境质量指数分值介于29~79,31.0%样点生境质量处于较差和很差等级,57.1%样点为一般等级,表明整体上生境退化明显;南部丘陵山区河流的生境质量状况好于广大的平原河网区;不同土地利用类型下河流生境质量差异显著,林地区域的生境质量明显好于耕地和建设用地;河流生境质量指数与富营养化综合指数显著负相关,说明水质状况对河流生境质量具有较大贡献。  相似文献   

20.
An analysis was made of the associations with local habitat features of barbels ( Barbus sp.) of a Mediterranean river basin. The analysis was based on the presence data from sampling the upper, middle, and lower reaches of 31 rivers in the middle Guadiana River basin (south‐west Spain). Numerous local habitat variables were determined, including the river's size and substratum, physicochemical variables of water, and the aquatic and riparian vegetation. For each species, a univariate analysis was performed using preference indices, and logistic regression was used to construct a parsimonious multivariate model and Gaussian response models with the most influential variables, quantifying the species' limits of tolerance. Distinct habitat associations for every species were obtained, mainly relating Barbus comiza to the larger habitats and higher water levels, Barbus microcephalus to the maintenance of lotic conditions and Barbus sclateri to more fluctuating rivers. Barbus steindachneri showed a different habitat relationship from that of the genetically almost identical B. comiza . Cover played a significant role in all but B. comiza .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号