首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visual senescence symptoms and associated changes in constituent contents of three field-grown maize (Zea mays L.) hybrids (Pioneer brand 3382, B73 × Mo17, and Farm Service brand 854) were compared in response to ear removal. Whole plants were harvested at eight intervals during the grain-filling period, and analyzed for dry matter, total N and nitrate N, phosphorus, sugars, and starch.

Upper leaves of earless P3382 and B73 × Mo17 showed reddish discoloration by 25 days after anthesis (DAA) and all leaves had lost most of their chlorophyll by 40 DAA. In striking contrast, leaves of earless FS854 plants remained green and similar in appearance to eared controls throughout the grain-filling period.

For all hybrids, ear removal led to a decrease in dry weight, reduced N, total N, and phosphorus contents of the total plant, and an increase in carbohydrate content of the leaves and stalks, relative to respective controls. Although changes in carbohydrate and N contents, which previously had been associated with senescence, were observed for all earless hybrids, these changes were followed by accelerated senescence and early death only for P3382 and B73 × Mo17. By 30 DAA, earless P3382 and B73 × Mo17 plants ceased to accumulate dry weight, total N, and phosphorus, indicating a termination of major metabolic activities. In contrast, earless FS854 plants retained a portion of these metabolic activities until 58 DAA, indicating a role for roots in determining rate of senescence development. Thus, the course of senescence was more accurately reflected by measurements of metabolic activities than by measurements of metabolite contents at any given time. These results show that the ear per se does not dictate the rate or completion of the senescence process, and implicated an association between the continued accumulation of N and associated root activities with the delayed senescence pattern of the earless FS854 plants. It is evident that studies involving control of senescence among species must also consider genotypic influences within species.

  相似文献   

2.
In conjunction with a study of the effects of ear removal on the senescence of whole maize (Zea mays L.) plants, visual symptoms and associated changes in constituent contents and activities of a selected leaf (first leaf above the ear) were determined. Leaves were sampled from field-grown eared and earless Pioneer brand 3382, B73 × Mo17, and Farm Services brand 854 maize hybrids at nine times during the grainfilling period.

Visual symptoms indicated the following sequence and rate of senescence: earless B73 × Mo17 > earless P3382 » eared B73 × Mo17 » eared P3382 ≤ earless FS854 > eared FS854. All earless hybrids showed increases in leaf dry weight and sugar content; however, the increases were transitory for P3382 and B73 × Mo17, but continuous throughout the grain-filling period for FS854, indicative of continued photosynthetic activity of the latter. All earless hybrids exhibited similar and transitory starch accumulation patterns. Thus, FS854 was an exception to the concept that carbohydrate accumulation accelerates leaf senescence. Ear removal resulted in accelerated losses of reduced N, phosphoenolpyruvate and ribulose bisphosphate carboxylases, phosphorus, chlorophyll, nitrate reductase activity, and moisture for P3382 and B73 × Mo17 plants. In contrast, the loss of all components (except phosphorus) was similar for the selected leaf of earless and eared FS854.

Although the loss of nitrate reductase activity, reduced N, and carboxylating enzymes accurately reflected the development of senescence of the selected leaf, the rate of net loss of reduced N and carboxylating enzymes appeared to be regulated. We deduced that the rate of flux of N into the leaf was a factor in regulating the differing rates of senescence observed for the six treatments; however, we cannot rule out the possibility of concurrent influence of growth regulators or other metabolites.

  相似文献   

3.
Four high-yield-potential maize hybrids (FS854, CB596 x LH38, B73 x LH38, and B73 x Mo17) and four inbred lines (LH38, CB59G, Mo17, and B73) were grown in the field to study traits associated with leaf area duration (LAD) and the relationship between LAD and kernel growth characters. Based on decline in chlorophyll, leaf N concentration, CO(2) exchange rate, and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase) activities, the hybrid B73 x Mo17 had a significantly shorter LAD than the other three hybrids. The shorter LAD was not due to maturity because B73 x Mo17 is in a maturity class similar to the other hybrids except CB59G x LH38, which is approximately 1 week earlier. At the time of grain maturity, leaves of B73 x Mo17 had lost all chlorophyll and CO(2) exchange and carboxylase activities. The other three hybrids, however, retained green leaves which still had 20% of the maximum CO(2) exchange rate. In addition, B73 x Mo17 remobilized leaf N more extensively. For all hybrids, declines in CO(2) exchange were closely correlated with declines in PEPCase activity, whereas the relationship between CO(2) exchange and Rubisco activity was weak. Responses of the inbred lines predicted, to some extent, physiological characteristics of the hybrids. CB59G and LH38 both had a longer LAD than either B73 or Mo17 as judged by decline in chlorophyll, leaf N, CO(2) exchange rate, and Rubisco and PEPCase activities. With the exception of B73 x LH38, kernel growth characteristics of the hybrids were related to LAD. Effective filling period (EFP) measured in days was 32.9, 31.5, 30.8, and 30.4 for FS854, CB59G x LH38, B73 x LH38, and B73 x Mo17, respectively. For FS854 and CB59G x LH38, the longer EFP was associated with a larger kernel weight. These data suggested that late season photoassimilate resulting from longer LAD could be utilized by the kernels of these two hybrids. For B73 x Mo17, the shorter LAD and EFP was associated with a kernel dry matter accumulation rate (10.1 milligrams per kernel per day) which was significantly higher than for the other three hybrids. Thus, the more rapid leaf senescence of B73 x Mo17 appeared to be coordinated with efficient leaf N remobilization and a relatively short grain-filling period characterized by rapid kernel dry matter accumulation.  相似文献   

4.
Maize (Zea mays L.) productivity under drought stress dependsto some extent upon a hybrid's capacity to produce and translocateassimilate to its developing kernels during the stress periodand/or after the stress is relieved. The objective of this studywas to evaluate differences in carbon and nitrogen accumulationand partitioning under drought stress among maize hybrids thatdiffer in yield potential and/or physiological metabolism duringreproductive development. The hybrids B73 x LH38, FS854, B73xMol7and US13 were subjected to drought stress from the 7th leafstage until pollination was completed, at which time the soilof the stressed plots was replenished with water. For d. wtand chemical constituent determinations, plants of each hybridwere harvested from the irrigated and drought stressed plotsat silking, mid-grain fill, and physiological maturity. Averagedover hybrids, vegetative biomass at silking was reduced 25%as a result of the drought stress treatment, with B73 x LH38and FS854 accumulating more total biomass during the later portionof grain fill than the other two hybrids under both soil moisturetreatments. At silking, the total non-structural carbohydratecontent of the hybrids' vegetative tissue was not changed asa result of drought stress, whereas their reduced nitrogen (N)contents were decreased by an average of 33%. B73 x LH38 andFS854 had greater grain carbohydrate and reduced N contentsunder irrigation and smaller decreases in those variables asa result of soil moisture deficit than did the other two hybrids.These results indicate that the greater drought tolerance ofB73 x LH38 and FS854 to stress imposed during vegetative andearly reproductive development resulted from their more activeN uptake and assimilation and sugar production during the laterportion of grain fill and from their more efficient partitioningof assimilate to the developing kernels. Zea mays L., maize, drought stress, nitrogen, carbohydrates, hybrids, partitioning  相似文献   

5.
Wheat plants (Triticum aestivum L. 'Lyallpur'), limited to a single culm, were grown at day/night temperatures of either 18/13 degrees C (moderate temperature), or 27/22 degrees C (chronic high temperature) from the time of anthesis. Plants were either non-droughted or subjected to two post-anthesis water stresses by withholding water from plants grown in different volumes of potting mix. In selected plants the demand for assimilates by the ear was reduced by removal of all but the five central spikelets. In non-droughted plants, it was confirmed that shading following anthesis (source limitation) reduced kernel dry weight at maturity, with a compensating increase in the dry weight of the remaining kernels when the total number of kernels was reduced (small sink). Reducing kernel number did not alter the effect of high temperature following anthesis on the dry weight of the remaining kernels at maturity, but reducing the number of kernels did result in a greater dry weight of the remaining kernels of droughted plants. However, the relationship between the response to drought and kernel number was confounded by a reduction in the extent of water stress associated with kernel removal. Data on the effect of water stress on kernel dry weight at maturity of plants with either the full complement or reduced numbers of kernels, and subjected to low and high temperatures following anthesis, indicate that the effect of drought on kernel dry weight may be reduced, in both absolute and relative terms, rather than enhanced, at high temperature. It is suggested that where high temperature and drought occur concurrently after anthesis there may be a degree of drought escape associated with chronic high temperature due to the reduction in the duration of kernel filling, even though the rate of water use may be enhanced by high temperature.  相似文献   

6.
Past research on kernel growth in wheat (Triticum aestivum) has shown that the kernel itself largely regulates the influx of sucrose for consequent starch synthesis in the endosperm of the grain. The first step in the conversion of sucrose to starch is catalyzed by sucrose synthase (EC 2.4.13). Sucrose synthase activity was assayed in developing endosperms from kernels differing in growth rate and in maximum dry weight accumulation. From 10 to 22 days after anthesis, sucrose synthase activity per wheat endosperm remained constant with respect to time in all grains. However, kernels which had higher rates of kernel growth and which achieved greatest maximum weight had consistently and significantly higher sucrose synthase activities at any point in time than did kernels with slower rates of dry matter accumulation and lower maximum weight. In addition, larger kernels had a significantly greater amount of water in which this activity could be expressed. Although the results do not implicate sucrose synthase as the “rate limiting” enzyme in wheat kernel growth, they do emphasize the importance of sucrose synthase activity in larger or more rapidly growing kernels, as compared to smaller slower growing kernels.  相似文献   

7.
This study was conducted to explore systemic infection by the Aspergillus flavus group into corn ears via the stalk. An A. parasiticus mutant which produces norsolorinic (NOR) acid (a visible orange intermediate of the aflatoxin biosynthetic pathway) was used in field studies to monitor systemic infection of corn stalk and ear tissues. Corn hybrids resistant and susceptible to aflatoxin contamination were grown in the field and inoculated prior to tasseling by inserting A. parasiticus infested toothpicks into stalks between the 5th and 6th node below the lowest ear shoot. Beginning 2 weeks after inoculation, systemic infection by the NOR mutant was assessed weekly by collecting ear shank tissue and stalk tissue from the nodes between the infection sites and the developing ears. Ears were collected at the end of the growing season to determine the level of kernel infection by the NOR mutant. In two separate studies, the A. parasiticus NOR mutant was isolated from stalk tissues at all of node positions and ear shank tissue from several susceptible corn hybrid plants at the first harvest date 2 weeks after inoculation. The NOR mutant was also isolated from stalk and ear tissue of a resistant hybrid. The NOR mutant was only isolated from kernels of susceptible hybrids in 2003 and 2004. Infection rates of kernels in infected ears were very low (<1%). In 2005, the fungus was found in only one kernel from an ear of the resistant hybrid. The NOR mutant was not isolated from stalks, ears, or kernels from control (uninoculated) plants grown in the plots with inoculated plants. Although infection levels of corn kernels were low, systemic movement of the A. parasiticus up the stalk appears to be another possible route to infection of developing corn ears.  相似文献   

8.
小麦产量与品质对灌浆不同阶段高温胁迫的响应   总被引:36,自引:0,他引:36       下载免费PDF全文
利用人工环境控制室对盆栽冬小麦 (品种 :‘济南 17’和‘鲁麦 2 1’) (Triticumaestivumcv.‘Ji′nan17’and‘Lumai2 1’) 分别在子粒灌浆前期、中期和后期进行了 2 5℃ / 35℃ (夜 /昼 ) 的高温胁迫处理, 以生长在 2 0℃ / 30℃ (夜 /昼 ) 环境中的小麦为对照, 研究了灌浆期不同阶段高温胁迫对小麦产量和品质的影响。结果发现 :1) 子粒蛋白质积累速率在高温处理期间显著提高 (p<0.0 5 ), 但高值持续期缩短, 并最终造成植株氮素积累量减少, 氮素收获指数降低 (p <0.0 5 ) 。 2 ) 小麦蛋白质的组成和品质对不同灌浆阶段的响应存在显著差异, 前期高温胁迫导致麦谷蛋白 /醇溶蛋白的比值以及麦谷蛋白大聚合体 (GMP) 含量增加, 标志蛋白质和淀粉品质的湿面筋含量升高、沉降值增加、膨胀势和高峰粘度等指标也显著提高 ;灌浆中期高温却导致上述指标降低 ;灌浆后期高温在造成粒重减小、产量降低和淀粉品质下降的同时, 却有利于蛋白质含量的提高。 3) 小麦淀粉积累的形成与蛋白质品质的形成是两个既相互联系又相互独立的过程, 高温条件下子粒蛋白质含量的升高是淀粉积累量减少造成的。  相似文献   

9.
Nitrogen metabolism in the stalk tissue of maize   总被引:1,自引:0,他引:1  
Ta CT 《Plant physiology》1991,97(4):1375-1380
During ear development in maize (Zea mays L.), nitrogenous compounds are translocated from vegetative organs to the kernels. At anthesis, the stalk contains approximately 40% of the total plant N, and contributes 45% of the N remobilized to the ear. Therefore, the stalk has an important function as a temporary reservoir for N. Little is known of the metabolism of maize stalks, and this paper describes initial studies of enzymes of N metabolism. High in vitro activity of glutamine synthetase (GS) in maize stalk samples throughout ear development contrasted with a peak in activity of glutamate synthase soon after anthesis and negligible nitrate reductase. With fresh sections of stalk tissue collected at anthesis, 15N-feeding experiments confirmed high GS and low nitrate reductase activities. Two isoforms of GS were separated from extracts from stalk tissue: GS1, the cytoplasmic form, increased to maximum levels at 2 weeks postanthesis and remained fairly high thereafter; whereas the plastidic form, GS2, declined progressively during kernel development. Western blot analysis confirmed the presence of constantly high levels of GS protein after anthesis. The levels of GS proteins decreased after transfer of N-starved, hydroponically grown plants to N-rich conditions in order to restrict remobilization of N. In contrast, transfer of plants grown under abundant N conditions to N-free medium, which encourages N remobilization, resulted in a relative increase in GS protein. Because glutamine is the major form of N transported in maize, the results indicate that GS, specifically the GS1 isoform, has a central role in the remobilization on nitrogenous compounds from the stalk to the ear.  相似文献   

10.
Field grown maize (Zea mays L. cv B73 × Mo17) plants, with and without ears, were sprayed with urea solutions to determine whether foliar application of N could prevent or delay the accelerated loss of reduced N from the leaf and leaf senescence induced by ear removal. Urea sprays were applied at 7, 14, and 21 days after anthesis in three separate and equal applications that provided a total of 67 kilograms N per hectare or 1 gram N per plant. Treatments were arranged in a 2 × 2 factorial in a randomized complete block with five replicates. Appropriate plant and leaf samplings and assays were made.

In response to spray treatments, net increases of reduced N were detected in the whole shoot and plant parts, especially the stalk of the earless plants and grain of the eared plants. There was no effect of urea spray treatment on the normal loss of N from the leaves or rate of senescence of the eared plants or on the accelerated loss of N from the leaves or rate of senescence induced by ear removal. Grain and stover yields were unaffected by the spray treatment.

Apparently the plants were unable to utilize the urea N applied to the vegetation (primarily leaves) after anthesis to enhance or extend the accumulation of dry weight by either eared or earless plants.

  相似文献   

11.
通过田间试验,研究了不同烯效唑干拌种剂量对3个不同筋力小麦品种植株氮素积累、运转和籽粒蛋白质品质的影响,结果表明,基因型、环境及烯效唑处理对小麦品质的影响效应依次减小,且均达到了极显著水平,但三者的互作效应较小。烯效唑处理后提高了不同生态点下不同小麦品种籽粒蛋白质含量和产量,处理后的面筋含量和沉淀值增加,面团形成时间和稳定时间延长;干拌种增加了开花期各营养器官中的氮素含量和单株氮素积累量,花后氮素总转移量、总转移率及其对籽粒氮的贡献率极显著提高,且处理后旗叶中可溶性蛋白质含量在花后15 d内均显著高于对照;对籽粒中氮含量而言,烯效唑处理后提高了灌浆初期籽粒中的非蛋白氮含量,花后5—20 d内均高于对照,灌浆期间籽粒蛋白氮含量均高于对照,因而处理后的粗蛋白质含量变化动态特点为谷底高、回升快。研究认为,烯效唑处理如同基因、环境一样独立影响小麦籽粒品质,而烯效唑处理后提高了开花初期旗叶中的可溶性蛋白质含量和花前营养器官中氮素含量及花后氮素转运量,可能是其提高籽粒非蛋白氮含量、促进籽粒蛋白质含量增加和蛋白质质量提高的重要原因之一,烯效唑干拌种对小麦籽粒蛋白质品质的改善具有广适性。  相似文献   

12.
2010—2011年以耐荫性较弱的玉米杂交种豫玉22和耐荫性较强的玉米杂交种郑单958为材料,在抽雄前3 d开始进行弱光胁迫处理,吐丝后10 d恢复自然光照,研究弱光胁迫及光恢复对不同耐荫型玉米果穗生长发育及其内源激素含量的影响。结果表明:弱光胁迫下,玉米果穗生长发育明显减缓,穗长、穗粗和果穗干物质积累显著减小,秃尖度变大;穗行数、穗粒数和籽粒库容显著降低;吐丝期果穗顶部小穗子房发育停滞,已有败育迹象的籽粒在恢复自然光照后无明显改善;豫玉22果穗和籽粒性状在处理间的差异程度均大于郑单958。弱光胁迫下,两玉米杂交种果穗的ABA和ZR含量均升高,而GA含量和GA/ABA比值均降低;IAA含量和IAA/ABA比值在郑单958果穗中表现为升高,而豫玉22则表现为下降。  相似文献   

13.
To study the importance for final grain size in wheat (Triticum aestivum, L.) of assimilate supply and the storage capacity of the grain, two field experiments were done. In 1976 nitrogen was applied in the range from none to 180 kg ha-1, part of the crop was thinned, and the top halves of some ears of the short variety Hobbit and of the tall variety Maris Huntsman were removed soon after anthesis. In 1977 ears of Maris Huntsman were halved 5 days after anthesis or at 30 days after anthesis when grain volume was maximum. Thinning the crop from 360 to 180 ear-bearing shoots m-2 30 days before anthesis increased the number of grains per ear, except in the absence of nitrogen fertiliser, but did not increase grain size, grain dry weight per ear or total dry weight per culm. Removing the upper half of ears of Hobbit 5 days after anthesis increased dry weight per grain, but when this treatment was applied to Maris Huntsman either 5 days after anthesis in 1976 and 1977, or when grain volume was maximal in 1977, the grains failed to increase in dry weight. Non-grain dry weight of both varieties was increased by halving the ear. In both varieties the maximum volume of grains in halved ears was larger than in intact ears. Grain dry weight increased relatively less than volume after halving the ear of Hobbit, and the decrease in volume up to maturity was greater in halved than intact ears of both varieties. The larger grain volume in halved ears of Maris Huntsman in 1977 was associated with more endosperm cells.  相似文献   

14.
Apical kernels of maize (Zea mays L.) ears have smaller size and lower growth rates than basal kernels. To improve our understanding of this difference, the developmental patterns of starch-synthesis-pathway enzyme activities and accumulation of sugars and starch was determined in apical- and basal-kernel endosperm of greenhouse-grown maize (cultivar Cornell 175) plants. Plants were synchronously pollinated, kernels were sampled from apical and basal ear positions throughout kernel development, and enzyme activities were measured in crude preparations. Several factors were correlated with the higher dry matter accumulation rate and larger mature kernel size of basal-kernel endosperm. During the period of cell expansion (7 to 19 days after pollination), the activity of insoluble (acid) invertase and sucose concentration in endosperm of basal kernels exceeded that in apical kernels. Soluble (alkaline) invertase was also high during this stage but was the same in endosperm of basal and apical kernels, while glucose concentration was higher in apical-kernel endosperm. During the period of maximal starch synthesis, the activities of sucrose synthase, ADP-Glc-pyrophosphorylase, and insoluble (granule-bound) ADP-Glc-starch synthase were higher in endosperm of basal than apical kernels. Soluble ADP-Glc-starch synthase, which was maximal during the early stage before starch accumulated, was the same in endosperm from apical and basal kernels. It appeared that differences in metabolic potential between apical and basal kernels were established at an early stage in kernel development.  相似文献   

15.
Physiological Factors Limiting Grain Size in Wheat   总被引:5,自引:0,他引:5  
The effects on grain size of changing the supply of assimilates,by thinning before anthesis or by shading the plants or by halvingthe ears either early or late in grain growth, were studiedin two glasshouse experiments with Kleiber spring wheat (Triticumaestivum L.), in 1976 and 1977. Late treatments had no effect,presumably because little grain growth occurred thereafter.Thinning the plants before anthesis increased, and shading theplants soon after anthesis decreased grain size. Halving theears soon after anthesis increased the size of the remaininggrains, but grain weight per ear decreased. The effect on grainsize of halving the ear tended to be smaller under conditionsmore favourable for photosynthesis, except when the plants werethinned before anthesis. Shading decreased the total amountof nitrogen per culm and the proportion of total nitrogen recoveredin the ear. Halving increased the retention of nitrogen in thestem of unshaded shoots and had no effect on nitrogen distributionwithin shaded shoots. In 1977 halving the ear increased the rate of dry matter accumulationin the grain throughout the grain filling period, but in 1976the increase in dry weight was faster in the grains of halvedears only during early grain growth. Later the grains in halvedand intact ears increased in dry weight at the same rate, eventhough the supply of photosynthate and the capacity of the grains(as measured by volume) were greater in the halved ears. Theseresults are discussed in relation to the influence on finalgrain weight of assimilate supply and the storage capacity ofthe grain.  相似文献   

16.
选用强筋小麦品种济麦20和弱筋小麦品种山农1391,在大田试验条件下,分别于籽粒灌浆前期(花后6—9 d)、中期(花后16—19 d)和后期(花后26—29 d)对小麦进行弱光照处理,研究了籽粒产量、蛋白质组分及加工品质的变化。灌浆期弱光显著降低小麦籽粒产量,灌浆中期对济麦20和灌浆后期对山农1391的产量降幅最大。弱光处理后,籽粒氮素积累量及氮素收获指数减少。但弱光使籽粒蛋白质含量显著升高,其中灌浆中期弱光升幅最大,原因可能是由于其粒重降低造成的。弱光对可溶性谷蛋白无显著影响,但增加不溶性谷蛋白含量,使谷蛋白聚合指数显著升高,面团形成时间和稳定时间亦升高,籽粒灌浆中、后期弱光对上述指标的影响较前期大。灌浆期短暂的弱光照对改善强筋小麦粉质仪参数有利,但使弱筋小麦变劣;并均伴随籽粒产量的显著降低这一不利影响。  相似文献   

17.
Foehn-like extreme hot and dry wind conditions (34°C, >2.5 kPa vapor pressure deficit, and 7 m s−1) strongly affect grain quality in rice (Oryza sativa L.). This is a current concern because of the increasing frequency and intensity of combined heat and water-deficit stress under climate change. Foehn-induced dry wind conditions during the grain-filling stage increase ring-shaped chalkiness as a result of spatiotemporal reduction in starch accumulation in the endosperm, but kernel growth is sometimes maintained by osmotic adjustment. Here, we assess the effects of dry wind on chalky ring formation in environmentally controlled growth chambers. Our results showed that hot and dry wind conditions that lasted for >24 h dramatically increased chalky ring formation. Hot and dry wind conditions temporarily reduced panicle water potential to –0.65 MPa; however, kernel growth was maintained by osmotic adjustment at control levels with increased transport of assimilate to the growing kernels. Dynamic tracer analysis with a nano-electrospray-ionization Orbitrap mass spectrometer and quantitative polymerase chain reaction analysis revealed that starch degradation was negligible in the short-term treatment. Overall expression of starch synthesis-related genes was found to be down-regulated at moderately low water potential. Because the events observed at low water potential preceded the packing of starch granules in cells, we concluded that reduced rates of starch biosynthesis play a central role in the events of cellular metabolism that are altered at osmotic adjustment, which leads to chalky ring formation under short-term hot and dry wind conditions.  相似文献   

18.
采用开顶式气室和盆栽方法,以冬小麦品种‘小偃22’为材料,探讨了分期施氮与CO2浓度升高对小麦抽穗期和灌浆中期旗叶光合、地上部物质积累和产量的互作效应.结果显示:(1)不施氮条件下CO2浓度升高对小麦旗叶叶绿素含量(SPAD)和可溶性蛋白含量、光合能力、地上部花后干物质和氮素累积量、籽粒产量的影响不明显(P>0.05)或产生显著负效应;在施氮(300mg/kg土)条件下各指标均不同程度增加,且大多数达到显著水平.(2)与氮肥全部基施相比,分期施氮时CO2浓度升高使灌浆期旗叶光合能力、地上部花后干物质和氮素累积以及产量增加的幅度较大,其中以播前、返青期和孕穗期施氮比例为5∶3∶2时最明显.研究表明,适当分期施氮可能更有利于发挥CO2浓度升高对冬小麦的增产作用.  相似文献   

19.
Apical florets of maize (Zea mays L.) ears differentiate later than basal florets and form kernels which have lower dry matter accumulation rates. The purpose of this study was to determine whether increasing the temperature of apical kernels during the dry matter accumulation period would alter the difference in growth rate between apical and basal kernels. Apical regions of field-grown maize (cultivar Cornell 175) ears were heated to 25 ± 3°C from 7 days after pollination to maturity (tip-heated ears) and compared with unheated ears (control). In controls, apical-kernel endosperm had 24% smaller dry weight at maturity, lower concentration of sucrose, and lower activity of ADP-Glc starch synthase than basal-kernel endosperm, whereas ADP-Glc-pyrophosphorylase (ADPG-PPase) activities were similar. In tip-heated ears apical-kernel endosperm had the same growth rate and final weight as basal-kernel endosperm and apical kernels had higher sucrose concentrations, higher ADP-Glc starch synthase activity, and similar ADPG-PPase activity. Total grain weight per ear was not increased by tip-heating because the increase in size of apical kernels was partially offset by a slight decrease in size of the basal- and middle-position kernels. Tip-heating hastened some of the developmental events in apical kernels. ADPG-PPase and ADP-Glc starch synthase activities reached peak levels and starch concentration began rising earlier in apical kernels. However, tip-heating did not shorten the period of starch accumulation in apical kernels. The results indicate that the lower growth rate and smaller size of apical kernels are not solely determined by differences in prepollination floret development.  相似文献   

20.
Quantitative trait loci (QTLs) for the main steps of nitrogen (N) metabolism in the developing ear of maize (Zea mays L.) and their co-localization with QTLs for kernel yield and putative candidate genes were searched in order to identify chromosomal regions putatively involved in the determination of yield. During the grain-filling period, the changes in physiological traits were monitored in the cob and in the developing kernels, representative of carbon and N metabolism in the developing ear. The correlations between these physiological traits and traits related to yield were examined and localized with the corresponding QTLs on a genetic map. Glycine and serine metabolism in developing kernels and the cognate genes appeared to be of major importance for kernel production. The importance of kernel glutamine synthesis in the determination of yield was also confirmed. The genetic and physiological bases of N metabolism in the developing ear can be studied in an integrated manner by means of a quantitative genetic approach using molecular markers and genomics, and combining agronomic, physiological and correlation studies. Such an approach leads to the identification of possible new regulatory metabolic and developmental networks specific to the ear that may be of major importance for maize productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号