首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the nucleotide sequence of a 1.45 kb segment containing the eta gene, coding for staphylococcal exfoliative toxin A (ETA), isolated from the recombinant plasmid pETA-J3. The coding region of 840 bp specified a polypeptide of 280 amino acid residues which included a putative 38 residue signal sequence. The amino acid composition deduced from the structural gene was in agreement with the results of peptide analysis of the ETA molecule reported by others. The sequence of the 35 N-terminal amino acid residues of ETA derived from Staphylococcus aureus strain ZM was also consistent with that deduced from the DNA sequencing.  相似文献   

2.
Epidermolytic toxin serotype B of Staphylococcus aureus is plasmid-encoded   总被引:1,自引:0,他引:1  
Abstract The gene coding for epidermolytic toxin serotype B ( etb ) was cloned in a plasmid expression vector in Escherichia coli . Its expression was dependent on the vector plasmid's trc promoter. A polypeptide immunochemically indistinguishable from the purified staphylococcal toxin and with the same molecular weight was predominantly localized in the periplasm of E. coli . The etb gene resides on a 1.7 kb Hin dIII fragment of the 42 kb plasmid pTC142 present in the parental Staphylococcus aureus strain.  相似文献   

3.
4.
Edward R. Fliss  Peter Setlow   《Gene》1984,30(1-3):167-172
The nucleotide sequence of the Bacillus megaterium gene coding for spore-specific protein C-3 has been determined. The gene codes for 65 amino acids and the coding sequence is preceded by an efficient ribosome-binding site. The predicted protein C-3 sequence agrees with both the amino acid composition and the amino terminal sequence of protein C-3, and shows homology (approx. 65 % of all residues are identical) with the sequences of the analogous proteins A and C of B. megaterium. Protein C-3 is cleaved by the sequence-specific B. megaterium spore protease, and the amino acid sequence at the new amino-terminus generated is identical to that predicted from the gene sequence, and homologous to the spore protease cleavage sites in the A and C proteins. The protein C-3 gene also shares a number of features with the previously sequenced protein C gene in both upstream and downstream flanking sequence.  相似文献   

5.
家蚕核型多角体病毒gp64基因的克隆和全序列测定   总被引:2,自引:0,他引:2  
:Bm NPV gp64 基因在杆状病毒分子生物学和杆状病毒表达系统研究中具有重要的作用,以AcMNPV gp64 基因为探针,杂交显示Bm NPV gp64 基因定位于其基因组Bam HI酶切的4 .2kb 和7-4kb 片段上,克隆阳性片段,重组质粒分别命名为pZDBM42 和pZDBM74 。对重组质粒进一步杂交,将片断更精确定位于0-45kb 片段、0-75kb 片断上和1-15kb 片断上,将三个片断DNA 进行序列分析,结果表明:Bm NPV 的gp64 基因的开放阅读框(ORF) 有1530 核苷酸,编码509 个氨基酸。序列同源性比较显示,Bm NPV gp64 基因和AcMNPVgp64 基因的核苷酸序列同源性达84-3 % ,氨基酸序列同源性达94-7 % 。Bm NPV gp64 基因C 端的信号肽序列和N 端的锚定序列对于Bm NPV 表达系统的改进具有重要的意义。  相似文献   

6.
Lysyl hydroxylase (EC 1.14.11.4), an alpha 2 dimer, catalyzes the formation of hydroxylysine in collagens by the hydroxylation of lysine residues in peptide linkages. A deficiency in this enzyme activity is known to exist in patients with the type VI variant of the Ehlers-Danlos syndrome, but no amino acid sequence data have been available for the wildtype or mutated human enzyme from any source. We report the isolation and characterization of cDNA clones for lysyl hydroxylase from a human placenta lambda gt11 cDNA library. The cDNA clones cover almost all of the 3.2-kb mRNA, including all the coding sequences. These clones encode a polypeptide of 709 amino acid residues and a signal peptide of 18 amino acids. The human coding sequences are 72% identical to the recently reported chick sequences at the nucleotide level and 76% identical at the amino acid level. The C-terminal region is especially well conserved, a 139-amino-acid region, residues 588-727 (C-terminus), being 94% identical between the two species and a 76-amino-acid region, residues 639-715, 99% identical. These comparisons, together with other recent data, suggest that lysyl hydroxylase may contain functionally significant sequences especially in its C-terminal region. The human lysyl hydroxylase gene (PLOD) was mapped to chromosome 1 by Southern blot analysis of human-mouse somatic cell hybrids, to the 1p34----1pter region by using cell hybrids that contain various translocations of human chromosome 1, and by in situ hybridization to 1p36.2----1p36.3. This gene is thus not physically linked to those for the alpha and beta subunits of prolyl 4-hydroxylase, which are located on chromosomes 10 and 17, respectively.  相似文献   

7.
The nucleotide sequence of the mRNA encoding the glycoprotein from the New Jersey serotype of vesicular stomatitis virus (VSV) was determined from a cDNA clone containing the entire coding region. The sequence of 12 5'-terminal noncoding nucleotides present in the mRNA but not in the cDNA clone was determined from a primer extended to the 5' terminus of the mRNA. The mRNA is 1,573 nucleotides long (excluding polyadenylic acid) and encodes a protein of 517 amino acids. Only six nucleotides occur between the translation termination codon and the polyadenylic acid. Short homologies between the untranslated termini of this mRNA and the mRNAs of the Indiana serotype were found. The predicted protein sequence was compared with that of the glycoprotein of the Indiana serotype of VSV and with the glycoprotein of rabies virus, using a computer program which determines optimal alignment. An amino acid identity of 50.9% was found for the two VSV serotypes. Approximately 20% identity was found between the rabies virus and VSV New Jersey glycoproteins. The positions and sizes of the transmembrane domains, the signal sequences, and the glycosylation sites are identical in both VSV serotypes. Two of five serine residues which were possible esterification sites for palmitate in the glycoprotein from the Indiana serotype are changed to glycine residues in the glycoprotein from the New Jersey serotype. Because the glycoprotein of the New Jersey serotype does not contain esterified palmitate, we suggest that one or both of these residues are the probable esterification sites in the glycoprotein from the Indiana serotype.  相似文献   

8.
The complete nucleotide sequence of the NS mRNA of vesicular stomatitis virus (New Jersey serotype) was established from two cDNA clones spanning the entire coding region of the mRNA. The gene is 856 nucleotides long and can code for a polypeptide of 274 amino acids. Comparison with the nucleotide sequence of the NS gene of the Indiana serotype revealed only 41% sequence homology. The deduced amino acid sequences of the NS proteins were only 32% homologous, with no identical stretches of more than five amino acids. However, at the C-terminal domain there was a conserved region of 21 amino acids with greater than 90% homology. Surprisingly, relative hydropathicity plots also demonstrated the presence of a large number of hydrophilic amino acids sequestered similarly over the N-terminal half of the protein. In addition, the total number of serine and threonine residues, presumptive phosphorylation sites, was similar and included seven serine and three threonine residues located at identical positions. It appears that during divergent evolution of these two vesicular stomatitis virus serotypes from a common ancestor, considerable mutation occurred in the main body of the gene but the overall structure of the protein was retained. The function of the NS protein in relation to the evolution of the two viruses is discussed.  相似文献   

9.
We have determined the nucleotide sequence of the uvsX gene of bacteriophage T4 which is involved in DNA recombination and damage repair, and whose product catalyzes in vitro reactions related to recombination process in analogous manners to E. coli recA gene product. The coding region consisted of 1170 nucleotides directing the synthesis of a polypeptide of 390 amino acids in length with a calculated molecular weight of 43,760. Amino acid composition, the sequence of seven NH2-terminal amino acids and molecular weight of the protein deduced from the nucleotide sequence were consistent with the data from the analysis of the purified uvsX protein. The nucleotide sequence and the deduced amino acid sequence were compared with those of the recA gene. Although a significant homology was not found in the nucleotide sequences, the amino acid sequences included 23% of identical and 15% of conservatively substituted residues.  相似文献   

10.
The sequence of the coagulase gene (coa) from Staphylococcus aureus strain 8325-4 is reported. The deduced amino acid sequence of the coagulase protein is compared with previously reported sequences of coagulases from strains 213 and BB. The secreted mature forms of coagulase proteins are composed of three distinct segments: (i) the N-terminal 150-270 residues, which are c. 50% identical, (ii) a central region with high (greater than 90%) residue identities, and (iii) a C-terminal region composed of repeated 27-amino-acid residue sequences. The variable N-terminal sequences are probably responsible for antigenic differences among coagulases of different serotype. The region of coagulase which binds to prothrombin and activates it to form staphylothrombin is also located in the N-terminal half of the protein. A site-specific substitution mutation in the coa gene, which abolished plasma clotting activity, was isolated by recombinational allele-replacement in strains 8325-4 and M60. The Coa- mutants did not show diminished virulence in subcutaneous and intramammary infections of mice. No evidence for a role for coagulase in virulence of toxigenic or nontoxigenic strains was obtained. This contradicts findings of several groups using Coa- mutants generated by chemical mutagenesis and suggests that the earlier results were obtained with strains that had suffered additional mutations in virulence-related genes.  相似文献   

11.
The DNA encoding the exfoliative toxin A gene (eta) of Staphylococcus aureus was cloned into bacteriophage lambda gt11 and subsequently into plasmid pLI50 on a 1,391-base-pair DNA fragment of the chromosome. Exfoliative toxin A is expressed in the Escherichia coli genetic background, is similar in length to the toxin purified from culture medium, and is biologically active in an animal assay. The nucleotide sequence of the DNA fragment containing the gene was determined. The protein deduced from the nucleotide sequence is a polypeptide of 280 amino acids. The mature protein is 242 amino acids. The DNA sequence of the exfoliative toxin B gene was also determined. Corrections indicate that the amino acid sequence of exfoliative toxin B is in accord with chemical sequence data.  相似文献   

12.
The hybrid pre-enzyme formed by fusion of the signal peptide of the OmpA protein, a major outer membrane protein of Escherichia coli, to Staphylococcal nuclease A, a protein secreted by Staphylococcus aureus, is translocated across the cytoplasmic membrane of E. coli with concomitant cleavage of the signal peptide. A DNA fragment containing the coding sequence for the ompA signal peptide was initially ligated to a DNA fragment containing the coding sequence for nuclease A, with a linker sequence of 33 nucleotides separating the coding sequences. When this fused gene was induced, an enzymatically active nuclease was secreted into the periplasmic space; sequential Edman degradation of this protein revealed that the ompA signal peptide was removed at its normal cleavage site resulting in a modified version of the nuclease having 11 extra amino acid residues attached to the amino terminus of nuclease A. The 33 nucleotides between the coding sequences for the ompA signal peptide and the structural gene for nuclease A were subsequently deleted by synthetic oligonucleotide-directed site-specific mutagenesis. The nuclease produced by this hybrid gene was secreted into the periplasmic space and by sequential Edman degradation was identical to nuclease A. Thus, the ompA signal peptide is able to direct the secretion of fused staphylococcal nuclease A, and signal peptide processing occurs at the normal cleavage site. When the hybrid gene is expressed under the control of the lpp promoter, nuclease A is produced to the extent of 10% of the total cellular protein.  相似文献   

13.
We have isolated and sequenced a tRNAPhe gene from Neurospora crassa. Hybridization analyses suggest that trnaPhe is the only tRNA encoded on the cloned 5 kb DNA fragment. The tRNAPhe gene contains an intervening sequence 16 nucleotides in length located one nucleotide 3' to the anticodon position. The tRNAPhe coding region of Neurospora and yeast are 91% conserved, whereas their intervening sequences are only 50% identical. The pattern of sequence conservation is consistent with a proposed secondary structure for the tRNA precursor in which the anticodon is base paired with the middle of the intervening sequence and the splice points are located in adjacent single-stranded loops. The DNA sequence following the tRNAPhe coding region is similar to sequences following other genes transcribed by RNA polymerase III in that it is AT-rich and includes a tract of A residues in the coding strand. In contrast, the sequence preceding the Neurospora tRNAPhe coding region does not resemble sequences preceding other sequenced tRNA genes.  相似文献   

14.
Amino acid sequence of rhizopuspepsin isozyme pI 5   总被引:2,自引:0,他引:2  
The complete amino acid sequence of an aspartic protease from Rhizopus chinensis, rhizopuspepsin isozyme pI 5, has been determined. Partial sequences were first obtained from the isolated isozyme by a combination of chemical and proteolytic enzyme cleavages, peptide purifications, and Edman degradations. About one-half of the sequence was revealed by this approach. To complete the amino acid sequence, a cDNA library of R. chinensis in pBR322 was constructed. An oligonucleotide probe was synthesized based on the sequence Trp-Trp-Gly-Ile-Thr, and about 40 positive clones were identified by colony hybridization. A clone, 33E2, which had an insert size of about 1.1 kilobase pairs, was found to contain the entire coding region of rhizopuspepsin isozyme pI 5. The sequence of rhizopuspepsin contains 325 amino acid residues. The alignment of the rhizopuspepsin sequence against other aspartic proteases revealed expected homology, with the closest similarity to penicillopepsin which shares 39% identical residues. Porcine pepsin shares about 36% identical residues with rhizopuspepsin.  相似文献   

15.
cDNAs encoding the entire coding regions of the precursors (p) of rat long chain acyl-CoA (LCAD), short chain acyl-CoA (SCAD) and isovaleryl-CoA dehydrogenase (IVD) have been cloned and sequenced. Three cDNAs for rat liver LCAD together cover a 1440-base pair region. These cDNAs encode the entire 430-amino acid sequence of pLCAD, including the 30-amino acid leader peptide and the 400-amino acid mature LCAD. A single 1773 base pair cDNA for rat SCAD covers the entire coding region (414 amino acids), including the 26-amino acid leader peptide and the 388-amino acid mature peptide. Four identified IVD cDNAs, when combined, encompass a 2104 base region, and encode 424 amino acids including a 30-amino acid leader peptide and the 394-amino acid mature peptide. The identities of all cDNA clones have been confirmed by matching the amino acid sequences predicted from the respective cDNAs to the amino-terminal and tryptic peptide sequences derived from the corresponding purified rat enzyme. Comparison of the sequences of four rat acyl-CoA dehydrogenases, including LCAD, MCAD, SCAD, and IVD, and two of their human counterparts (MCAD and SCAD) reveals a high degree of homology (57 invariant and 92 near invariant residues: 30.6-35.4% of identical residues in pairwise comparisons), suggesting that these enzymes belong to a gene family and have evolved from a common ancestral gene.  相似文献   

16.
The nucleotide sequence of the gene coding for the F0F1-ATPase gamma-subunit (atpC) from the transformable cyanobacterium Synchocystis 6083 has been determined. The deduced translation product consists of 314 amino acid residues and is highly homologous (72% identical residues) to the sequences of other cyanobacterial gamma-subunits. The Synechocystis 6803 sequence is also homologous to the chloroplast gamma-sequence. Like in the other cyanobacterial subunits, only the first of the 3 cysteine residues, which are involved in energy-linked functions of the gamma-subunit in spinach chloroplasts, is conserved in Synechocystis 6803.  相似文献   

17.
C A Alpert  B M Chassy 《Gene》1988,62(2):277-288
The lactose-specific factor III (FIIIlac of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) was isolated from Lactobacillus casei and purified to homogeneity by conventional protein purification methods. Its apparent native Mr, estimated from steric exclusion chromatography (approx. 39 kDa), and subunit Mr, estimated from sodium dodecyl sulfate-polyacrylamide gels, indicated that it exists as a trimer of identical subunits of 13 kDa. The gene for FIII L. casei lac was cloned into Escherichia coli using the vector pUC18. The coding sequences were contained on an 860-bp BglII-HindIII DNA fragment of the L. casei lactose plasmid, pLZ64. A protein identical in properties to FIII L. casei lac was isolated from clones of E. coli carrying this DNA insert. The nucleotide sequence of the FIII L. casei lac gene was determined by the dideoxy chain-termination technique. The 336-bp open reading frame for FIII L. casei lac was followed by a stem-loop structure, analogous to a Rho-independent terminator. We concluded that the FIII L. casei lac was the terminal gene in what appears to be an operon comprised of the lactose-PTS-P-beta Gal-coding genes. Comparison of the deduced amino acid sequence of FIII L. caseilac with the amino acid sequence of FIII S. aureus lac (derived from peptide sequencing) demonstrated a high degree of homology (49 identical residues and 21 conservative exchanges out of 103 total aa residues). The FIII L. casei lac lacked his82, previously identified as the phosphorylation site of FIII S. aureus. lac His80 was proposed to be the site of histidyl phosphorylation of FIII L. casei lac.  相似文献   

18.
The atpA and atpB genes coding for the alpha and beta subunits, respectively, of membrane ATPase were cloned from a methanogen Methanosarcina barkeri, and the amino acid sequences of the two subunits were deduced from the nucleotide sequences. The methanogenic alpha (578 amino acid residues) and beta (459 amino acid residues) subunits were highly homologous to the large and small subunits, respectively, of vacuolar H+-ATPases; 52% of the residues of the methanogenic alpha subunit were identical with those of the large subunit of vacuolar enzyme of carrot or Neurospora crassa, respectively, and 59, 60, and 59% of the residues of the methanogenic beta subunit were identical with those of the small subunits of N. crassa, Arabidopsis thaliana, and Sacharomyces cerevisiae, respectively. The methanogenic subunits were also highly homologous to the corresponding subunits of Sulfolobus acidocaldarius ATPase. The methanogenic alpha and beta subunits showed 22 and 24% identities with the beta and the alpha subunits of Escherichia coli F1, respectively. Furthermore, important amino acid residues identified genetically in the E. coli enzyme were conserved in the methanogenic enzyme. This sequence conservation suggests that vacuolar, F1, methanogenic, and S. acidocaldarius ATPases were derived from a common ancestral enzyme.  相似文献   

19.
The mtl operon of Klebsiella pneumoniae KAY2026 (formerly Aerobacter aerogenes 1033-5P14) was shown to contain as the promoter-proximal gene mtlA, encoding a D-mannitol-specific enzyme II transporter (IICBA(Mtl)). This gene is followed by mtlD, coding for a mannitol-1-phosphate dehydrogenase (MtlD, 382 amino acid residues), and mtlR (MtlR, 195 amino acid residues) coding for a putative repressor, gene mtlR overlaps the termination codon of mtlD. The DNA and protein sequences are highly similar to the corresponding genes (81% identical bp) and proteins (79-85% identical amino acids) of Escherichia coli K-12. A truncated form of MtlD lacking the 162 C-terminal amino acid residues still shows 10% dehydrogenase activity which may explain the controversy in the literature concerning the properties of mannitol-phosphate and other medium-length dehydrogenases.  相似文献   

20.
The aim of study was the molecular characteristic of S. aureus and S. epidermidis isolates obtained from skin surface, wounds, deep tissues of hospitalized patients and from skin surface of non-hospitalized patients. Genes encoding virulence factors were examined using PCR reaction and specific primers. Genes encoding adhesinsfnbA and cna and gene eta for epidermolytic toxin were mostly present in S. aureus isolates coming from wounds and deep tissues compared to these from skin surface. Gene atlE encoding autolysin of S. epidermidis was detected in all studied isolates, whereas gene icaAB was present in almost all isolates. Comparison of results obtained by PCR and conventional method of the resistance to methicillin estimation showed discrepances suggesting the need for using of both methods in some clinically difficult cases of S. aureus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号