首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rho-GTPases-activating toxin CNF1 (cytotoxic necrotizing factor 1) delivers its catalytic activity into the cytosol of eukaryotic cells by a low pH membrane translocation mechanism reminiscent of that used by diphtheria toxin (DT). As DT, CNF1 exhibits a translocation domain (T) containing two predicted hydrophobic helices (H1-2) (aa 350-412) separated by a short peptidic loop (CNF1-TL) (aa 373-386) with acidic residues. In the DT loop, the loss of charge of acidic amino acids, as a result of protonation at low pH, is a critical step in the transfer of the DT catalytic activity into the cytosol. To determine whether the CNF1 T domain operates similarly to the DT T domain, we mutated several ionizable amino acids of CNF1-TL to lysine. Single substitutions such as D373K or D379K strongly decreased the cytotoxic effect of CNF1 on HEp-2 cells, whereas the double substitution D373K/D379K induced a nearly complete loss of cytotoxic activity. These single or double substitutions did not modify the cell-binding, enzymatic or endocytic activities of the mutant toxins. Unlike the wild-type toxin, single- or double-substituted CNF1 molecules bound to the HEp-2 plasma membrane could not translocate their enzymatic activity directly into the cytosol following a low pH pulse.  相似文献   

2.
Pseudomonas exotoxin A (PE) is a single polypeptide chain that contains 613 amino acids and is arranged into three major structural domains. Domain Ia is responsible for cell recognition, domain II for translocation of PE across the membrane, and domain III for ADP-ribosylation of elongation factor 2. Recombinant PE can be produced in Escherichia coli and is efficiently secreted into the periplasm when an OmpA signal sequence is present. To investigate the role of the amino acids located on the surface of domain II in the action of the toxin against mammalian cells, we substituted alanine for each of the 27 surface amino acids present in domain II. Surprisingly, all 27 mutant proteins had some alteration in cytotoxicity when tested on human A431 or MCF7 cells or mouse L929 cells. Native PE has a compact structure and therefore is relatively protease resistant and very little ADP-ribosylation activity is detected in the absence of the denaturing agents like urea and dithiothreitol. Several of the mutations resulted in altered protease sensitivity of the toxin. Seven of the mutant molecules exhibited ADP-ribosylation activity without urea and dithiothreitol, indicating they are partially unfolded. Out of these seven mutants, six had increased cytotoxic activity on at least one of the target cell lines and the other retained its native cytotoxic potency.  相似文献   

3.
Pseudomonas exotoxin A (PE) is a cytotoxin composed of three structural domains. Domain I is responsible for cell binding, domain II for membrane translocation enabling access to the cytosol, and domain III for the catalytic inactivation of protein synthesis, which results in cell death. To investigate the role of the six alpha-helices (A-F) that form the translocation domain, we deleted them successively one at a time. All mutants showed native cell-binding and catalytic activities, indicating that deletions specifically affected translocation activity. This step of the intoxication procedure was examined directly using a cell-free translocation assay, and indirectly by monitoring cytotoxicity. Translocation activity and log(cytotoxicity) were highly correlated, directly indicating that translocation is rate limiting for PE intoxication. Deletion of B, C and D helices resulted in non-toxic and non-translocating molecules, whereas mutants lacking the A or E helix displayed significant cytotoxicity albeit 500-fold lower than native PE. We concluded that B, C and D helices, which make up the core of domain II, are essential, whereas the more peripheral A and E helices are comparatively dispensable. The last helix (F) is inhibitory for translocation because its deletion produced a mutant displaying a translocation activity 60% higher than PE, along with a three- to sixfold increase in cytotoxicity in all tested cell lines. This toxin is the most in vitro active PE mutant obtained until now. Finally, partial duplication of domain II did not give rise to a more actively translocated PE, but rather to a threefold less active molecule.  相似文献   

4.
Pseudomonas exotoxin A is composed of three structural domains that mediate cell recognition (I), membrane translocation (II), and ADP-ribosylation (III). Within the cell, the toxin is cleaved within domain II to produce a 37-kDa carboxyl-terminal fragment, containing amino acids 280-613, which is translocated to the cytosol and causes cell death. In this study, we constructed a mutant protein (PE37), composed of amino acids 280-613 of Pseudomonas exotoxin A, which does not require proteolysis to translocate. PE37 was targeted specifically to cells with epidermal growth factor receptors by inserting transforming growth factor-alpha (TGF-alpha) after amino acid 607 near the carboxyl terminus of Pseudomonas exotoxin A. PE37/TGF-alpha was very cytotoxic to cells with epidermal growth factor receptors. It was severalfold more cytotoxic than a derivative of full-length Pseudomonas exotoxin A containing TGF-alpha in the same position, probably because the latter requires intracellular proteolytic processing to exhibit its cytotoxicity, and proteolytic processing is not 100% efficient. Deletion of 2, 4, or 7 amino acids from the amino terminus of PE37/TGF-alpha greatly diminished cytotoxic activity, indicating the need for a proper amino-terminal sequence. In addition, a mutant containing an internal deletion of amino acids 314-380 was minimally active, indicating that other regions of domain II are also required for the cytotoxic activity of Pseudomonas exotoxin A.  相似文献   

5.
T I Prior  D J FitzGerald  I Pastan 《Cell》1991,64(5):1017-1023
We have constructed a chimeric toxin composed of Pseudomonas exotoxin A (PE) and the extracellular ribonuclease of Bacillus amyloliquefaciens, barnase. The chimeric protein, termed PE-Bar, reacted with both anti-PE and anti-barnase antisera and had both ADP ribosylation and ribonuclease activities. The chimeric toxin was cytotoxic to the murine fibroblast cell line L929 and to a murine hybridoma resistant to PE. A mutant form of PE-Bar lacking ADP-ribosylating activity was still cytotoxic to L929 cells. Because treatment of cells prelabeld with [3H]uridine resulted in a decrease in their RNA content, we conclude that this cytotoxic effect was due to the ribonuclease activity of barnase molecules that had been translocated to the cytosol. It is now possible to construct chimeric toxins with two or more enzymatic activities that can be delivered to the cytosol of the target cells.  相似文献   

6.
Pseudomonas exotoxin (PE) contains 613 amino acids that are arranged into 3 structural domains. PE exerts its cell-killing effects in a series of steps initiated by binding to the cell surface and internalization into endocytic vesicles. The toxin is then cleaved within domain II near arginine-279, generating a C-terminal 37-kDa fragment that is translocated into the cytosol where it ADP-ribosylates elongation factor 2 and arrests protein synthesis. In this study, we have focused on the functions of PE which are encoded by domain II. We have used the chimeric toxin TGF alpha-PE40 to deliver the toxin's ADP-ribosylating activity to the cell cytosol. Deletion analysis revealed that sequences from 253 to 345 were essential for toxicity but sequences from 346 to 364 were dispensable. Additional point mutants were constructed which identified amino acids 339 and 343 as important residues while amino acids 344 and 345 could be altered without loss of cytotoxic activity. Our data support the idea that domain II functions by first allowing PE to be processed to a 37-kDa fragment and then key sequences such as those identified in this study mediate the translocation of ADP-ribosylation activity to the cytosol.  相似文献   

7.
Domain II mutants of Pseudomonas exotoxin deficient in translocation   总被引:16,自引:0,他引:16  
Pseudomonas exotoxin (PE) kills mammalian cells in a complex process that involves cell surface binding, internalization by endocytosis, translocation to the cytosol, and ADP-ribosylation of elongation factor 2. PE is a three-domain protein in which domain I binds to the cell surface, domain II promotes translocation into the cytosol, and domain III carries out ADP-ribosylation. To determine how translocation occurs, we have mutated all the arginine residues in domain II and found that mutations at positions 276 and 279 greatly diminished the cytotoxicity of PE and mutations 330 and 337 substantially reduced cytotoxicity. Biochemical studies indicate that after internalization into an endocytic compartment, the PE molecule undergoes a specific and saturable intracellular interaction, and this interaction is deficient in an Arg276----Gly mutant. Our data suggest that the translocation process of PE involves a specific interaction of Arg276 (and possibly Arg279, Arg330, and Arg337) with components of an intracellular compartment.  相似文献   

8.
We have raised antisera against Pseudomonas exotoxin A (PE) and domains Ia and III to study the structure-function relationships of PE. Anti-PE antibody (AbPE) was shown to abolish the ADP-ribosylation activity of PE. However, neither antidomain Ia antibody nor antidomain III antibody inhibited the ADP-ribosylation activity of PE. This suggests that the inhibition of ADP-ribosylation by AbPE results from the binding of AbPE to the region between domains Ia and III. Since the binding of AbPE to PE did not inhibit NAD hydrolysis in the absence of elongation factor 2, the inhibitory effect of AbPE on ADP-ribosylation may be due to steric hindrance rather than a direct action on the catalytic function. Thus, the interface between domain Ia and III may be the site of entry of elongation factor 2 during ADP-ribosylation. The antibodies were also used to study both the inhibitory effects of PE on protein synthesis and its cytotoxic activity. Either AbPE or antidomain Ia antibody, but not antidomain III antibody, was able to reverse the inhibition of protein synthesis by PE and to block its cytotoxicity. In addition, rabbits immunized with domain Ia acquired tolerance against 100 micrograms of PE injected subcutaneously. These results suggest that domain Ia is the cell-binding domain of PE and may be used for vaccination against PE-mediated diseases.  相似文献   

9.
The crystal structure of the exotoxin A (ETA) of Pseudomonas aeruginosa showed that this protein is folded into three distinct domains. Domain I (Ia and Ib), the amino-terminal domain, is the receptor-binding domain of ETA and domain III, the carboxy-terminal domain, is responsible for the ADP-ribosyl transferase activity of the toxin. To elucidate the function(s) of domains 1b and II in the intoxication process and to define the region of the domain III necessary for ADP-ribosylating activity, a defined deletion in the structural gene of P. aeruginosa ETA encompassing residues 225-412 was constructed and an ETA-related product DeID, (from which all of domains II and Ib were deleted) was expressed. The ETA-related protein did not penetrate sensitive cells, but retained the same specific activity to ADP-ribosylate elongation factor-2 as wild-type toxin. This suggests that domain II is necessary to allow toxin internalization by sensitive cells and that the absence of domain Ib does not interfere with enzymic activity. The domain strictly involved in ADP-ribosylation activity encompasses residues 412-613.  相似文献   

10.
Clostridium botulinum C2 toxin is the prototype of the binary actin-ADP-ribosylating toxins and consists of the binding component C2II and the enzyme component C2I. The activated binding component C2IIa forms heptamers, which bind to carbohydrates on the cell surface and interact with the enzyme component C2I. This toxin complex is taken up by receptor-mediated endocytosis. In acidic endosomes, heptameric C2IIa forms pores and mediates the translocation of C2I into the cytosol. We report that the heat shock protein (Hsp) 90-specific inhibitors, geldanamycin or radicicol, block intoxication of Vero cells, rat astrocytes, and HeLa cells by C2 toxin. ADP-ribosylation of actin in the cytosol of toxin-treated cells revealed that less active C2I was translocated into the cytosol after treatment with Hsp90 inhibitors. Under control conditions, C2I was localized in the cytosol of toxin-treated rat astrocytes, whereas geldanamycin blocked the cytosolic distribution of C2I. At low extracellular pH (pH 4.5), which allows the direct translocation of C2I via C2IIa heptamers across the cell membrane into the cytosol, Hsp90 inhibitors retarded intoxication by C2I. Geldanamycin did not affect toxin binding, endocytosis, and pore formation by C2IIa. The ADP-ribosyltransferase activity of C2I was not affected by Hsp90 inhibitors in vitro. The cytotoxic actions of the actin-ADP-ribosylating Clostridium perfringens iota toxin and the Rho-ADP-ribosylating C2-C3 fusion toxin was similarly blocked by Hsp90 inhibitors. In contrast, radicicol and geldanamycin had no effect on anthrax lethal toxin-induced cytotoxicity of J774-A1 macrophage-like cells or on cytotoxic effects of the glucosylating Clostridium difficile toxin B in Vero cells. The data indicate that Hsp90 is essential for the membrane translocation of ADP-ribosylating toxins delivered by C2II.  相似文献   

11.
Pseudomonas exotoxin (PE) was incubated with cells and extracts analyzed for processed fragments. PE was proteolytically cleaved to produce a N-terminal 28-kDa and a C-terminal 37-kDa fragment, the latter being composed of a portion of domain II and all of domain III (the ADP-ribosylating domain). Cleavage was evident at 10 min after toxin addition and endosome preparations contained the processed fragments. Initially, the two fragments were linked by a disulfide bond. Subsequently, the 37-kDa fragment was reduced and translocated to the cytosol where it inactivated protein synthesis. Cytosol from toxin-treated cells was greatly enriched in the 37-kDa fragment. The 37-kDa fragment appears to be essential for toxicity since mutant PE molecules that do not produce this fragment, or cannot deliver it to the cytosol, fail to kill cells.  相似文献   

12.
Pseudomonas exotoxin: chimeric toxins   总被引:17,自引:0,他引:17  
Pseudomonas exotoxin binds to and enters cells by receptor-mediated endocytosis. Within the cell it requires exposure to low pH to enable it to translocate to the cell cytoplasm where it inhibits protein synthesis by ADP-ribosylating elongation factor 2. The toxin has three main structural domains whose functions are: Ia, cell binding; II, translocation; and III, ADP-ribosylation. Key amino acids have been identified within each domain that are required for the function of the toxin. Chimeric toxins were made originally by using chemical cross-linking reagents to couple Pseudomonas exotoxin (or other toxins) to cell-binding proteins. More recently, a variety of Pseudomonas exotoxin-related chimeric toxins have been made by gene fusion technology. These chimeric toxins may be useful clinically for treating various diseases and experimentally for understanding receptor function.  相似文献   

13.
The virulence factor SpvB is a crucial component for the intracellular growth and infection process of Salmonella enterica. The SpvB protein mediates the ADP-ribosylation of actin in infected cells and is assumed to be delivered directly from the engulfed bacteria into the host cell cytosol. Here we used the binary Clostridium botulinum C2 toxin as a transport system for the catalytic domain of SpvB (C/SpvB) into the host cell cytosol. A recombinant fusion toxin composed of the enzymatically inactive N-terminal domain of C. botulinum C2 toxin (C2IN) and C/SpvB was cloned, expressed, and characterized in vitro and in intact cells. When added together with C2II, the C2IN-C/SpvB fusion toxin was efficiently delivered into the host cell cytosol and ADP-ribosylated actin in various cell lines. The cellular uptake of the fusion toxin requires translocation from acidic endosomes into the cytosol and is facilitated by Hsp90. The N- and C-terminal domains of SpvB are linked by 7 proline residues. To elucidate the function of this proline region, fusion toxins containing none, 5, 7, and 9 proline residues were constructed and analyzed. The existence of the proline residues was essential for the translocation of the fusion toxins into host cell cytosol and thereby determined their cytopathic efficiency. No differences concerning the mode of action of the C2IN-C/SpvB fusion toxin and the C2 toxin were obvious as both toxins induced depolymerization of actin filaments, resulting in cell rounding. The acute cellular responses following ADP-ribosylation of actin did not immediately induce cell death of J774.A1 macrophage-like cells.  相似文献   

14.
Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin   总被引:24,自引:0,他引:24  
Pseudomonas exotoxin is composed of three structural domains that are responsible for cell recognition, membrane translocation, and ADP-ribosylation. The substitution of the cell recognition domain (domain Ia) with a growth factor such as transforming growth factor alpha (TGF alpha), creates a cell-specific cytotoxic agent, TGF alpha-PE40, which kills cells bearing epidermal growth factor (EGF) receptors. We have used TGF alpha-PE40 to define the role of sequences in domains II, Ib, and III. Various mutations were made in these domains and mutant forms of TGF alpha-PE40 expressed in Escherichia coli. Mutant proteins were then tested for their ADP-ribosylation, EGF receptor-binding, and cell-killing activities. Additionally, the amino boundary of domain III, which contains the ADP-ribosylation activity, was determined by deletion analysis. Data indicate that (i) the functional amino terminus of domain III is near amino acid 400; (ii) deletion of various regions in domain II or conversion of cysteines 265 and 268 to serines results in a loss of cytotoxicity which ranged from 10-fold to more than 150-fold, indicating that domain II is essential for full expression of cytotoxicity; (iii) deletion of the amino terminus of domain Ib results in a molecule with somewhat increased cytotoxic activity, indicating that domain Ib is not essential for the cytotoxic effect of TGF alpha-PE40; and (iv) TGF alpha-PE40, produced by denaturing and refolding of insoluble material from inclusion bodies, binds better to EGF receptors and is about 10-fold more cytotoxic to cells bearing EGF receptors than is the secreted form of soluble TGF alpha-PE40.  相似文献   

15.
Clostridium difficile toxins A and B bind to eukaryotic target cells, are endocytosed and then deliver their N-terminal glucosyltransferase domain after processing into the cytosol. Whereas glucosyltransferase, autoprocessing and cell-binding domains are well defined, structural features involved in toxin delivery are unknown. Here, we studied structural determinants that define membrane insertion, pore formation and translocation of toxin B. Deletion analyses revealed that a large region, covering amino acids 1501-1753 of toxin B, is dispensable for cytotoxicity in Vero cells. Accordingly, a chimeric toxin, consisting of amino acids 1-1550 and the receptor-binding domain of diphtheria toxin, caused cytotoxic effects. A large N-terminal part of toxin B (amino acids 1-829) was not essential for pore formation (measured by (86) Rb(+) release in mammalian cells). Studies using C-terminal truncation fragments of toxin B showed that amino acid residues 1-990 were still capable of inducing fluorescence dye release from large lipid vesicles and led to increased electrical conductance in black lipid membranes. Thereby, we define the minimal pore-forming region of toxin B within amino acid residues 830 and 990. Moreover, we identify within this region a crucial role of the amino acid pair glutamate-970 and glutamate-976 in pore formation of toxin B.  相似文献   

16.
Haug G  Wilde C  Leemhuis J  Meyer DK  Aktories K  Barth H 《Biochemistry》2003,42(51):15284-15291
The Clostridium botulinum C2 toxin is the prototype of the family of binary actin-ADP-ribosylating toxins. C2 toxin is composed of two separated nonlinked proteins. The enzyme component C2I ADP-ribosylates actin in the cytosol of target cells. The binding/translocation component C2II mediates cell binding of the enzyme component and its translocation from acidic endosomes into the cytosol. After proteolytic activation, C2II forms heptameric pores in endosomal membranes, and most likely, C2I translocates through these pores into the cytosol. For this step, the cellular heat shock protein Hsp90 is essential. We analyzed the effect of methotrexate on the cellular uptake of a fusion toxin in which the enzyme dihydrofolate reductase (DHFR) was fused to the C-terminus of C2I. Here, we report that unfolding of C2I-DHFR is required for cellular uptake of the toxin via the C2IIa component. The C2I-DHFR fusion toxin catalyzed ADP-ribosylation of actin in vitro and was able to intoxicate cultured cells when applied together with C2IIa. Binding of the folate analogue methotrexate favors a stable three-dimensional structure of the dihydrofolate reductase domain. Pretreatment of C2I-DHFR with methotrexate prevented cleavage of C2I-DHFR by trypsin. In the presence of methotrexate, intoxication of cells with C2I-DHFR/C2II was inhibited. The presence of methotrexate diminished the translocation of the C2I-DHFR fusion toxin from endosomal compartments into the cytosol and the direct C2IIa-mediated translocation of C2I-DHFR across cell membranes. Methotrexate had no influence on the intoxication of cells with C2I/C2IIa and did not alter the C2IIa-mediated binding of C2I-DHFR to cells. The data indicate that methotrexate prevented unfolding of the C2I-DHFR fusion toxin, and thereby the translocation of methotrexate-bound C2I-DHFR from endosomes into the cytosol of target cells is inhibited.  相似文献   

17.
A segment of the exotoxin A gene of Pseudomonas aeruginosa, coding for the N-terminal end of domain I and domain II of the toxin (ETA), was genetically fused to the diphtheria toxin gene of Corynebacterium diphtheriae, coding for the N-terminal end of A fragment of diphtheria toxin (DT). The resulting hybrid protein (termed CED1) was produced in large amounts and exported to the periplasm in Escherichia coli. This chimaeric protein reacted with both anti-ETA and anti-DT antisera. Furthermore, the chimaeric protein displayed ADP-ribosylation activity and exhibited cytotoxicity to mouse 3T6 fibroblasts. These results demonstrated that the chimaeric protein is cytotoxic, and that the toxic potential of DTA can be selectively internalized and translocated via domains I and II of exotoxin A, which are thus sufficient to direct and translocate an enzymatically active heterologous polypeptide segment into the cytosol of sensitive cells.  相似文献   

18.
The ADP-ribosylation domain of Pseudomonas exotoxin A (PE) has been identified to reside in structural domain III (residues 405-613) and a portion of domain Ib (residues 385-404) of the molecule (Hwang, J., FitzGerald, D. J., Adhya, S., and Pastan, I. (1987) Cell 48, 129-136). To further determine the carboxyl end region essential for ADP-ribosylation activity, we constructed sequential deletions at the carboxyl-terminal of PE. Our results show that a clone with a deletion of the carboxyl-terminal amino acid residues from Arg-609 to Lys-613 and replaced with Arg-Asn retained wild-type PE ADP-ribosylation activity. Deletion of the terminal amino acid residues from Ala-596 to Lys-613 and replaced with Val-Ile-Asn reduced ADP-ribosylation activity by 75%, while deletions of 36 or more amino acids from the carboxyl terminus completely lose their ADP-ribosylation activity. These modified PEs were also examined for their ability to block PE cytotoxicity. Our results shown that modified PEs which lost their ADP-ribosylation activity correspondingly lost their cytotoxicity. Furthermore, extracts containing PE fragments without ADP-ribosylation activity were able to block the cytotoxic activity of intact PE. Our results thus indicate that carboxyl-terminal amino acids in the Ser-595 region are crucial for ADP-ribosylation activity and, consequently, cytotoxicity of PE. The modified PEs which have lost their ADP-ribosylation activity may also be a route to new PE vaccines.  相似文献   

19.
The lethal factor (LF) and edema factor (EF) components of anthrax toxin are toxic to animal cells only if internalized by interaction with the protective antigen (PA) component. PA binds to a cell surface receptor and is proteolytically cleaved to expose a binding site for LF and EF. To study how LF and EF are internalized and trafficked within cells, LF was fused to the translocation and ADP-ribosylation domains (domains II and III, respectively) of Pseudomonas exotoxin A. LF fusion proteins containing Pseudomonas exotoxin A domains II and III were less toxic than those containing only domain III. Fusion proteins with a functional endoplasmic reticulum retention sequence, REDLK, at the carboxyl terminus of domain III were less toxic than those with a nonfunctional sequence, LDER. The most potent fusion protein, FP33, had an EC50 = 2 pM on Chinese hamster ovary cells, exceeding that of native Pseudomonas exotoxin A (EC50 = 420 pM). Toxicity of all the fusion proteins required the presence of PA and was blocked by monensin. These data suggest that LF and LF fusion proteins are efficiently translocated from acidified endosomes directly to the cytosol without trafficking through other organelles, as is required for Pseudomonas exotoxin A. This system provides a potential vehicle for importing diverse proteins into the cytosol of mammalian cells.  相似文献   

20.
Pseudomonas exotoxin (PE) is a three-domain toxin which is cleaved by a cellular protease within cells and then reduced to generate two prominent fragments (Ogata, M., Chaudhary, V. K., Pastan, I., and FitzGerald, D. J. (1990) J. Biol. Chem. 265, 20678-20685). The N-terminal fragment is 28 kDa in size and contains the binding domain. The 37-kDa C-terminal fragment, which translocates to the cytosol, contains the translocation domain and the ADP-ribosylation domain. Cleavage followed by reduction is essential for toxicity since mutant forms of the toxin that cannot be cleaved by cells are nontoxic. Previous results with these mutants suggest that cleavage occurred in an arginine-rich (arginine residues are at positions 274, 276, and 279) disulfide loop near the beginning of the translocation domain, but the exact site of cleavage was not determined. Since very few molecules of the 37-kDa fragment are generated within cells it was not possible to determine the site of cleavage by performing a conventional N-terminal sequence analysis of the 37-kDa fragment. Two experimental approaches were used to overcome this limitation. First, existing amino acids near the cleavage sites were replaced with methionine residues; this was followed by the addition of [35S]methionine-labeled versions of these toxins to cells. The pattern of radioactive toxin fragments recovered from the cells indicated that the toxin was cleaved either just before or just after Arg279. Second, [3H]leucine-labeled toxin was produced and added to the cells. Sequential Edman degradations were performed on the small amount of radioactive 37-kDa fragment that could be recovered from toxin-treated cells. A peak of radioactivity in the fifth fraction indicated that leucine was the 5th amino acid on the C-terminal side of the cleavage site. This result confirmed that cleavage was between Arg279 and Gly280.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号