首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Amt proteins are ammonium transporters that are conserved throughout all domains of life, being found in bacteria, archaea and eukarya. In bacteria and archaea, the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate enzyme activity and gene expression in response to the intracellular nitrogen status. We have now shown that in Escherichia coli and Azotobacter vinelandii, GlnK binds to the membrane in an AmtB-dependent manner and that GlnK acts as a negative regulator of the transport activity of AmtB. Membrane binding is dependent on the uridylylation state of GlnK and is modulated according to the cellular nitrogen status such that it is maximal in nitrogen-sufficient situations. The membrane sequestration of GlnK by AmtB represents a novel form of signal transduction in which an integral membrane transport protein functions to link the extracellular ammonium concentration to the intracellular responses to nitrogen status. The results also offer new insights into the evolution of P(II) proteins and a rationale for their trigonal symmetry.  相似文献   

3.
4.
The ammonium transport family Amt/Rh comprises ubiquitous integral membrane proteins that facilitate ammonium movement across biological membranes. Besides their role in transport, Amt proteins also play a role in sensing the levels of ammonium in the environment, a process that depends on complex formation with cytosolic proteins of the P(II) family. Trimeric P(II) proteins from a variety of organisms undergo a cycle of reversible posttranslational modification according to the prevailing nitrogen supply. In proteobacteria, P(II) proteins are subjected to reversible uridylylation of each monomer. In this study we used the purified proteins from Azospirillum brasilense to analyze the effect of P(II) uridylylation on the protein's ability to engage complex formation with AmtB in vitro. Our results show that partially uridylylated P(II) trimers can interact with AmtB in vitro, the implication of this finding in the regulation of nitrogen metabolism is discussed. We also report an improved expression and purification protocol for the A. brasilense AmtB protein that might be applicable to AmtB proteins from other organisms.  相似文献   

5.
The strictly respiratory, diazotrophic bacterium Azoarcus sp. strain BH72 fixes nitrogen under microaerobic conditions. In empirically optimized batch cultures at nanomolar O2 concentrations in the presence of proline, cells can shift into a state of higher activity and respiratory efficiency of N2 fixation in which intracytoplasmic membrane stacks (diazosomes) related to N2 fixation are formed. Induction of intracytoplasmic membranes is most pronounced in coculture of Azoarcus sp. strain BH72 with an ascomycete originating from the same host plant, Kallar grass. To initiate studies on function of diazosomes and regulation of their formation, diazosome-containing bacteria were compared with respect to composition or total cellular and membrane proteins with diazosome-free cells fixing nitrogen under standard conditions. In two-dimensional protein gels, we detected striking differences in protein patterns upon diazosome formation: (i) 7.3% of major proteins disappeared, and only 73% of the total proteins of control cells were detectable, indicating that diazosome-containing cells have a more specialized metabolism; (ii) nine new proteins appeared and five proteins increased in concentration, designated DP1 to DP 15; and (iii) five new major membrane proteins (MP1 to MP6) were detected, indicating that membranes might have specialized functions. N-terminal amino acid sequence analysis of DP1 to DP4 allowed us to preliminarily identify DP4 as the glnB gene product P(II), an intracellular signal transmitter known to be involved in the regulation of nitrogen metabolism. According to its electrophoretic mobility, it might be uridylylated in diazosome-free cells but not in diazosome-containing cells, or it may represent a second, not identical P(II) protein. Oligonucleotides deduced from N-terminal sequences of DP1 and DP4 specifically hybridized to chromosomal DNA of Azoarcus sp. strain BH72 in Southern hybridizations.  相似文献   

6.
Proteins are essential parts of living organisms and participate in virtually every process within cells.As the genomic sequences for increasing number of organisms are completed,research into how proteins can perform such a variety of functions has become much more intensive because the value of the genomic sequences relies on the accuracy of understanding the encoded gene products.Although the static three-dimensional structures of many proteins are known,the functions of proteins are ultimately governed by their dynamic characteristics,including the folding process,conformational fluctuations,molecular motions,and protein-ligand interactions.In this review,the physicochemical principles underlying these dynamic processes are discussed in depth based on the free energy landscape(FEL)theory.Questions of why and how proteins fold into their native conformational states,why proteins are inherently dynamic,and how their dynamic personalities govern protein functions are answered.This paper will contribute to the understanding of structure-function relationship of proteins in the post-genome era of life science research.  相似文献   

7.
8.
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.  相似文献   

9.
10.
It is commonly assumed that urea denatures proteins by promoting backbone disorder, resulting in random-coil behavior. Indeed, it has been demonstrated that highly denatured proteins obey random-coil statistics. However, the random-coil model is specified by the global geometric properties of a polymeric chain and does not preclude locally ordered backbone structure. While urea clearly disfavors a compact native structure, it is not clear that the resulting backbone conformations are disordered. Using circular dichroism (CD) spectroscopy, we demonstrate that urea promotes formation of left-handed polyproline II (P(II)) helical structures in both short peptides and denatured proteins. The observed increase in P(II) content is sequence-dependent. These data indicate that denatured states possess significant amounts of locally ordered backbone structure. It is time for the formulation of new denatured-state models that take into account the presence of significant local backbone structure. Criteria for such models are outlined.  相似文献   

11.
Discovering how membrane proteins recognize signals and passage molecules remains challenging. Life depends on compartmentalizing these processes into dynamic lipid bilayers that are technically difficult to work with. Several polymers have proven adept at separating the responsible machines intact for detailed analysis of their structures and interactions. Styrene maleic acid (SMA) co-polymers efficiently solubilize membranes into native nanodiscs and, unlike amphipols and membrane scaffold proteins, require no potentially destabilizing detergents. Here we review progress with the SMA lipid particle (SMALP) system and its impacts including three dimensional structures and biochemical functions of peripheral and transmembrane proteins. Polymers systems are emerging to tackle the remaining challenges for wider use and future applications including in membrane proteomics, structural biology of transient or unstable states, and discovery of ligand and drug-like molecules specific for native lipid-bound states.  相似文献   

12.
13.
P(II) proteins have been shown to be key players in the regulation of nitrogen fixation and ammonia assimilation in bacteria. The mode by which these proteins act as signals is by being in either a form modified by UMP or the unmodified form. The modification, as well as demodification, is catalyzed by a bifunctional enzyme encoded by the glnD gene. The regulation of this enzyme is thus of central importance. In Rhodospirillum rubrum, three P(II) paralogs have been identified. In this study, we have used purified GlnD and P(II) proteins from R. rubrum, and we show that for the uridylylation activity of R. rubrum GlnD, alpha-ketoglutarate is the main signal, whereas glutamine has no effect. This is in contrast to, e.g., the Escherichia coli system. Furthermore, we show that all three P(II) proteins are uridylylated, although the efficiency is dependent on the cation present. This difference may be of importance in understanding the effects of the P(II) proteins on the different target enzymes. Furthermore, we show that the deuridylylation reaction is greatly stimulated by glutamine and that Mn(2+) is required.  相似文献   

14.
Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.  相似文献   

15.
16.
17.
Pluripotent stem cells(PSCs) can be expanded in vitro in different culture conditions,resulting in a spectrum of cell states with distinct properties. Understanding how PSCs transition from one state to another, ultimately leading to lineage-specific differentiation, is important for developmental biology and regenerative medicine. Although there is significant information regarding gene expression changes controlling these transitions, less is known about post-translational modifications of proteins. Protein crotonylation is a newly discovered post-translational modification where lysine residues are modified with a crotonyl group. Here, we employed affinity purification of crotonylated(LC–MS/MS) to systematically profile protein crotonylation in mouse PSCs in different states including ground, metastable, and primed states, as well as metastable PSCs undergoing early pluripotency exit. We successfully identified 3628 high-confidence crotonylated sites in 1426 proteins. These crotonylated proteins are enriched for factors involved in functions/processes related to pluripotency such as RNA biogenesis, central carbon metabolism, and proteasome function. Moreover, we found that increasing the cellular levels of crotonyl-coenzyme A(crotonyl-CoA) through crotonic acid treatment promotes proteasome activity in metastable PSCs and delays their differentiation, consistent with previous observations showing that enhanced proteasome activity helps to sustain pluripotency. Our atlas of protein crotonylation will be valuable for further studies of pluripotency regulation and may also provide insights into the role of metabolism in other cell fate transitions.  相似文献   

18.
19.
GlnK proteins regulate the active uptake of ammonium by Amt transport proteins by inserting their regulatory T-loops into the transport channels of the Amt trimer and physically blocking substrate passage. They sense the cellular nitrogen status through 2-oxoglutarate, and the energy level of the cell by binding both ATP and ADP with different affinities. The hyperthermophilic euryarchaeon Archaeoglobus fulgidus possesses three Amt proteins, each encoded in an operon with a GlnK ortholog. One of these proteins, GlnK2 was recently found to be incapable of binding 2-OG, and in order to understand the implications of this finding we conducted a detailed structural and functional analysis of a second GlnK protein from A. fulgidus, GlnK3. Contrary to Af-GlnK2 this protein was able to bind both ATP/2-OG and ADP to yield inactive and functional states, respectively. Due to the thermostable nature of the protein we could observe the exact positioning of the notoriously flexible T-loops and explain the binding behavior of GlnK proteins to their interaction partner, the Amt proteins. A thermodynamic analysis of these binding events using microcalorimetry evaluated by microstate modeling revealed significant differences in binding cooperativity compared to other characterized P(II) proteins, underlining the diversity and adaptability of this class of regulatory signaling proteins.  相似文献   

20.
Kentsis A  Mezei M  Osman R 《Proteins》2005,61(4):769-776
Recent studies have indicated that the unfolded states of polypeptides contain a substantial amount of polyproline type II (P(II)) structure. This energetically and structurally preorganized state may contribute to the reduction of the folding search, as well as to the recognition of intrinsically unstructured proteins and polyproline ligands. Using Monte Carlo simulations of natively unfolded peptides in the presence of explicit aqueous solvation, we observe that residue-specific P(II) conformational propensity is the result of the modulation of polypeptide backbone hydration by a proximal side-chain. Such a mechanism may be unique among those that contribute to the modulation of secondary structures in proteins. The calculated conformational propensities should prove useful for the development of a configurational P(II) scale necessary for the prediction and design of natural-like polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号