首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synopsis Based on the results of investigations into the fine structure of red and white muscle of roach, Rutilus rutilus, and chub, Leuciscus cephalus (Sänger et al. 1990), analysis of axial muscle has been extended to include nine other cyprinid species. Quantitative comparisons were made of myofibrils, mitochondria, lipid and sub-sarcolemmal cytoplasm in relation to muscle fibre type and species. A comparison of these variables between the species shows that for red fibres there are significant differences in all measured variables in at least some cases. The most striking difference is in lipid content, with Danube bleak, Chalcalburnus chalcoides mento, having the highest amount. For white fibres, there were significant differences only in intermyofibrillar mitochondria and myofibrils, which were most significant in Danube bleak. As a preliminary study, intermediate, fibres have been examined qualitatively and compared with the other two fibre types using the above mentioned variables. The results allow cyprinids to be arranged according to their scores from the different measurements. These groupings are discussed in relation to the different life-styles of the fish.  相似文献   

2.
Summary Ultrastructural parameters of muscle fibre types of the carp (Cyprinus carpio L.) were measured and compared with their contractile properties. In red fibres, which are slower than pink fibres, the relative length of the junction between the T system and the sarcoplasmic reticulum (T-SR junction) is smaller and the Z lines are thicker than in pink fibres. Pink fibres have a smaller relative length of T-SR junction than white fibres from the axial muscles. The two types of red fibres present in carp muscle also differ in their relative lengths of T-SR junction. Significant differences in the relative areas of the SR were not found.The relative volume of myofibrils in red fibres is two-thirds that in pink fibres, a difference that is not reflected in the maximal isometric tetanic tensions of these types. Red fibres, which are less easily fatigued than pink fibres, have larger relative volumes of subsarcolemmal and intermyofibrillar mitochondria. Small pink fibres have a larger relative volume of subsarcolemmal mitochondria than large pink fibres, but have a similar relative volume of intermyofibrillar mitochondria. Small and large pink fibres differ in the relative volumes of their membrane systems, but have similar relative lengths of T-SR junction.  相似文献   

3.
The effect of an endurance training program lasting 17 weeks was studied in two cyprinid species, Chondrostoma nasus (L.) and Leuciscus cephalus (L.). Red, intermediate and white axial muscle were investigated. Morphometrical analysis revealed that training induced, in both species, increased red and intermediate muscle mass, fibre diameter and capillarization. Differences between species in the response to training were observed for volume densities of mitochondria and lipid. In contrast to C. nasus, L. cephalus show higher values for these compartments in red and intermediate fibres. The results are considered adaptational changes which increase the aerobic capacity of red and intermediate muscle fibres to meet higher sustained swimming activities.  相似文献   

4.
Carp show a partial compensation in metabolic rate and activity following temperature acclimation. In the present study crucian carp, Carassius carassius , were acclimated for eight weeks to either 2deg; C or 28deg; C. The effects of temperature acclimation on muscle fibre ultrastructure has been investigated. The fractional volume (%) of each fibre type occupied by mitochondria and myofibrils was determined using a point counting morphometric method. Mitochondrial density was found to be higher in the muscles of cold (red fibres 25%; pink fibres 20% and white fibres 4%) than in those of warm acclimated fish (red fibres 14%, pink fibres 11%, white fibres 1%). The proportion of subsarcolemmal to intra-myofibrillar mitochondria was significantly lower in the red fibres of cold acclimated fish. Metabolic compensation to low temperatures are therefore associated with an increase in the number of mitochondria per cell. In contrast, the fractional volume occupied by myofibrils actually decreased following cold acclimation. Evidence is reviewed that temperature compensation of contractile activity results from qualitative rather than quantitative changes in myofibrillar proteins.  相似文献   

5.
The objective of the present study was to develop a combination of fluorescent stains that would allow visualisation of the network of mitochondria and lipid droplets (intramyocellular lipids or IMCL) in human skeletal muscle fibres by means of conventional and confocal microscopy. Muscle biopsies were taken from the vastus lateralis of three lean, healthy and physically active male subjects. Frozen muscle sections were stained for mitochondria using antibodies against three mitochondrial proteins; porin, cytochrome c oxidase (COX) and NADH-ubiquinol oxidoreductase and neutral lipids were stained with oil red O. Anti-COX staining produced images with the strongest fluorescence signal and the highest resolution of the mitochondrial network and this stain was successfully combined with the antibody against type I fibre myosin. A highly organised matrix arrangement of mitochondria within the sarcomeres (in pairs at the I-band) was observed in the oxidative type I fibres. The density of mitochondria was the highest in the subsarcolemmal region. Anti-COX staining was combined with oil red O demonstrating that in type I fibres lipid droplets are mainly located in the space between the mitochondria.  相似文献   

6.
The cartilaginous fish Chimaera monstrosa swims slowly by means of pectoral fin movements, and fast by undulations of the tail. In order to compare the fibres in the corresponding muscles, they were studied by histochemistry and electron microscopy. Three fibre types were identified by microphotometry and morphometry. Most of the axial muscles are white fibres, containing little mitochondria and glycogen. Red fibres, with glycogen and about 5 % mitochondria constitute a thin sheet in the axial muscles, composed of one fibre layer only. Pink fibres, with intermediate amounts of glycogen and mitochondria are situated between these two types, but are often not covered by red fibres. Pectoral muscles contain numerous red and intermediate fibres, partially mixed, superficially, and white fibres deeper. Pectoral muscle red fibres contain about 25 % mitochondria, half of which are situated in subsarcolemmal accummulations. The sarcotubular system has T-tubules at the Z discs, and the terminal cisternae are partially divided by regularly spaced clefts.  相似文献   

7.
Metabolic and vascular adaptation of teleost lateral propulsive musculature to an active mode of life was investigated in four pelagic teleosts (mackerel, yellowtail scad, pilchard and Australian salmon). Histochemical profiles and capillarisation data of the red and white muscle were compared to those of less active demersal species. Pelagic white muscle stained positively for the aerobic enzymes succinate dehydrogenase and NADH diaphorase, and had both subsarcolemmal and intermyofibrillar mitochondria which corresponded to the loci of the histochemical stain. Subsarcolemmal mitochondria tended to be localised close to capillaries. In contrast, white muscle from demersal species was unstained for the same enzymes and was devoid of mitochondria. Red muscle of all species had abundant mitochondria and stained intensely for aerobic enzymes. Capillarisation was quantified by determining the percentage of fibres surrounded by a given number of peripheral capillaries, mean fibre diameter, mean number of peripheral capillaries, capillary: fibre ratio and sharing factor where appropriate. Red muscle of mackerel, Australian salmon, pilchard and scad are better vascularised than red muscle of the flathead having 153, 200, 242, 291 and 309 microns 2 of cross-sectional fibre area per peripheral capillary, respectively. White muscle of mackerel, pilchard and scad are better vascularised than white muscle of the Australian salmon and flathead having 2040, 3367, 4992, 9893 and 10,469 microns 2 of cross-sectional fibre area per peripheral capillary, respectively. Red muscle of Australian salmon had distinct regional variation. Deep red muscle was found to be more highly vascularised (4.2 peripheral capillaries per muscle fibre) than lateral red muscle (1.9 peripheral capillaries per muscle fibre). Red muscle of the other species was less heterogeneous. White muscle capillarisation was slightly variable in all species. It is concluded that the white muscle of the pelagic species studied is functionally and structurally adapted for sustained aerobic activity with relatively abundant mitochondria being preferentially situated close to the source of gas and metabolite exchange.  相似文献   

8.
The distribution of capillaries in teleost and rat striated muscles was investigated using a number of different methods. A new method for directly viewing capillaries was developed. Teleost white muscle has a capillary: fibre (C:F) ratio of between 0.2 and 0.3; and 0.6 to 1.0 peripheral capillaries per muscle fibre. 26-49% of fibres had no peripheral capillaries. Values for the rat gastrocnemius were 1.2, 2.6 and 4.8% respectively which compares well with literature values. Flathead red muscle had a C:F ratio of between 1.9 and 2.5; and between 5.3 and 6.6 peripheral capillaries per muscle fibre depending on the method used. Values for rat soleus were 1.8 and 4.1 respectively. Teleost pink fibres had an intermediate number of capillaries. Rat striated muscle, particularly the gastrocnemius, was found to be heterogeneous with respect to the distribution of capillaries. Flathead red muscle was homogeneous whilst teleost white muscle was only slightly variable. Flathead red muscle fibres are well suppled with subsarcolemmal mitochondria. These show a clumped distribution corresponding to the position of capillaries. In contrast teleost white fibres are almost totally devoid of these and all other mitochondria. No differences were observed in the vascularisation of either muscle type along the length of the fish. The results are discussed in relation to the division of labour between fibre types during swimming.  相似文献   

9.
The structure and distribution of red and white muscles have been investigated in female Anguilla anguilla of varying sexual maturity. Red muscle volumes increased with sexual maturation from approximately 5% of total muscle volume in sexually immature eels to a maximum of 13.3% in sexually maturing animals. Volume increase was due to increasing fibre diameter rather than recruitment of new fibres. Intracellular volume fractions of lipid and mitochondria increased markedly in maturing fish. Artificially matured cels showed the largest increases in muscle lipid. The possible functional roles of red and white muscle during migration are discussed.  相似文献   

10.
The distribution and growth of roach and dace in the R. Exe catchment was studied. Distribution conformed to the classic theories of zonation, although human interference extended or reduced the range of species. Distinct differences were found in the growth rates of roach and dace between different regions of the catchment. Both species achieved their fastest growth in zones where the river topography portrayed their 'preferred' habitat characteristics, i.e. the fast-flowing middle and slow-flowing lower reaches for dace and roach, respectively. Female roach were found to grow considerably faster than male fish, whilst no sexual differentiation in growth rates was found in dace. Considerable fluctuations in year class strength were observed in both species.  相似文献   

11.
The innervation pattern and fibre types of the axial musculature of two closely related catfish species with differing lifestyles, Ictalurus nebulosus (Lesueur) and I. punctatus (Rafinesque) were investigated. Both fish displayed the multiple innervation pattern in the red muscle. However, the white muscle of I. nebulosus demonstrated terminal innervation while I. puncrurus displayed multiply innervated white muscle fibres. Fibre typing utilizing histochemical techniques for glyco-gen, lipid, succinic dehydrogenase and glucose-6-phosphate dehydrogenase revealed the typical teleostean distribution of red, intermediate and white muscle fibres in both fish. Staining was greatest in the red muscle fibres and least in the white muscle fibres. The white muscle fibres of I. punctatus stained slightly more for lipid than the white fibres of I. nebulosus which may be correlated with a greater aerobic capacity related to lifestyle and possibly innervation.  相似文献   

12.
A histochemical study of the myotomal muscles in the roach revealed three main muscle regions: red, intermediate and white. These were distinguished on the basis of glycogen content, succinate dehydrogenase (SDH), and myofibrillar ATPase (mATPase) activity. Except for the red fibre region, none of these described regions is homogeneous. The principal new findings are the toniclike fibre, the presence of a transitional zone with two fibre types, and the mosaic organization of the white fibre region. The significance of this type of myotome architecture in relation to the locomotion of the species is discussed.  相似文献   

13.
Morphometric analysis by light microscopy of p-phenylene-diamine stained semithin sections of axolotl tail muscle revealed differences in the cross-sectional area of the fibres and in the number of mitochondria and of lipid inclusions per fibre, and indicated the presence of three distinct types of fibres. The tripartition was found to be statistically highly significant. Representative fibres from each group established by light microscopic morphometry were subjected to an ultrastructural morphometric analysis. The volume content of mitochondria amounted to 9.8% of the fibre volume for red, 4.0% for intermediate and 0.8% for white fibres. The myofibrils composed 60%, 70% and 83% in the same fibres. The volume of the sarcotubular system (t-tubuli and sarcoplasmic reticulum) was 2.5% in red, 4.5% in intermediate and 11.7% in white fibres. The three fibre types also demonstrated differences in myofibrillar cross-striation pattern and number of triads. The reliability of the light microscopic morphometry was tested by correlation with EM montages of the representative fibres.  相似文献   

14.
Summary Variance in succinate dehydrogenase activity along the transverse and longitudinal axes of fibres from the cat tibialis posterior and diaphragm muscles was determined in order to estimate the three-dimensional distribution of mitochondria within single fibres. The variance (coefficient of variation) in succinate dehydrogenase activity along the transverse fibre axis was greatest in type IIB fibres from both muscles. Intracellular compartmentalization (i.e. subsarcolemmal vs central core differences in succinate dehydrogenase activity) was observed only in type II fibres from the tibialis posterior; the succinate dehydrogenase activity of the subsarcolemmal region was significantly greater than that of the central core. The extent of succinate dehydrogenase variance along the longitudinal fibre axis was dependent on the total length of the fibre segment analyzed, the muscle, and fibre type. The coefficient variation for short fibre segments, i.e. 40 m, was significantly lower than that for much longer fibre segments (840 m). Significant differences in the coefficient variation for 840 m fibre segments were observed between the diaphragm and tibialis posterior muscles. The longitudinal variance in succinate dehydrogenase activity was higher in diaphragm muscle fibres. The succinate dehydrogenase variance along the longitudinal axis of type II fibres was significantly greater than that of the type I fibre population. These results indicate that mitochondria are heterogeneously distributed within muscle fibres. Possible functional implications of such intrafibre metabolic variance are discussed.  相似文献   

15.
Both red and white muscle were removed from juvenile and adult Atlantic mackerel, Scomber scombrus L., for histochemical characterization of the muscle fibre types. Staining of white muscle for myosin ATPase, SDH, NADH diaphorase, GPDH and LDH revealed that these fibres are homogeneous. Red muscle was shown to be heterogeneous, of at least two fibre types recognizable on the basis of myosin ATPase staining with preincubation at a pH of 9·8. These two red types are dispersed throughout the red muscle and are present in both juveniles and adults. Red muscle is located both deep within the myotomes and as a superficial layer of muscle fibres. A third group of muscle fibres, intermediate in nature, was distinguished at the apex of the red muscle 'triangle,' between the epaxial and hypaxial muscle, using NADH diaphorase and myosin ATPase stains. This paper discusses the possibility that functionally different muscle fibres occur in the red swimming muscle of the Atlantic mackerel.  相似文献   

16.
The purpose of this study was to investigate the effect of strength training (12 weeks, 3 days/week, four lower-body exercises) of young individuals (mean age 23.6 years) on estimates of mitochondrial distribution throughout muscle fibres. A control group (mean age 21. 7 years) was followed simultaneously. Skeletal muscle biopsy samples were obtained from the vastus lateralis, pre- and post-training. The regional distribution of subsarcolemmal and intermyofibrillar mitochondrial populations was determined using quantitative histochemical staining of succinate dehydrogenase (SDH) in type I and II muscle fibres. Strength training resulted in significant increases of 26% and 28% in the cross-sectional area of type I and II fibres, respectively (P < 0.05). Overall SDH activity decreased by 13% with strength training (P < 0.05). The decrease in SDH activity with strength training between fibre types and between subsarcolemmal and intermyofibrillar regions of muscle fibres was not different. Fibre area and SDH activity was unchanged in the control group. We conclude that the muscle hypertrophy associated with strength training results in reduced density of regionally distributed mitochondria, as indicated by the reduction in the activity of SDH.  相似文献   

17.
The microscopic organization and ultrastructure of the submandibular muscle of 10 species of Amphibia were compared. Among other fibre features the diameter of fibres, their content of mitochondria and fat, organization of sarcomeres: morphology of Z-line, M-band and sarcoplasmic reticulum were taken into consideration and 4 main types of muscle fibres were distinguished. They correspond to tonic (slow) and phasic (red, white and intermediate) ones. Slight variety of fibre morphology and of fibre elements among the examined species was found. Special attention to the variety of fibre morphology among the established types has been paid and the existence of continuous "spectrum" of fibres was suggested. The correlation of frequency of fibres of particular types with the body size, gular oscillation frequency, and some other characteristics of the submandibular muscle in the examined species was discussed. Also the zonal arrangement of muscle according to the fibre types, as well as possible dynamic nature of muscle fibres were emphasised.  相似文献   

18.
M A Khan 《Histochemistry》1976,50(2):103-110
In this study frozen sections of avian striated muscles were incubated for mitochondrial alpha-glycerophosphate de hydrognease (alpha=GPD) reaction, and the effect of menadione, phenazine methosulfate (PMS) or phenazine ethosulfate (PES) as intermediate electron acceptors was evaluated. Under histochemical conditions, PMS or PES-linked alpha-GPD reaction was poor in the chicken posterior latissimus dorsi and chicken pectoralis muscles. However, PMS or PES-linked alpha-GPD reaction was present characteristically in the subsarcolemmal mitochondria of the "broad white" fibres of the pigeon pectoralis muscle only; the subsarcolemmal mitochondria of the narrow red fibres lacked such a reaction pattern. The above reaction pattern, however, differed when compared with the menadione-linked alpha-GPD reaction. The present histochemical evidence suggests the existence of an inherent heterogeneity in the mitochondrial populations of the different avian striated muscle fibres studied.  相似文献   

19.
Summary Red, intermediate, and white axial muscle fibres of African lungfish were studied using histochemical techniques and electron microscopy. Gross dissection revealed the presence of a small wedge of red coloured muscle along the lateral line. This wedge was shown by histochemical demonstrations of lactate and succinate dehydrogenases, of adenosine triphosphatases, and of lipid to be composed of a mosaic of red and intermediate fibres measuring 23.63 and 34.30 m in average diameter, respectively. The bulk of the myotome was composed of white fibres having an average diameter of 67.35 m. Mitochondrial density, capillarity and lipid content were very low for all fibres. These data suggest that the axial musculature is geared primarily for anaerobic function. The mosaic arrangement of fibres, and the lack of a subsarcolemmal band of mitochondria suggests that the lungfish have a muscle organisation that is transitional between lower vertebrates and amphibians.  相似文献   

20.
First year roach from a Stillwater habitat were maintained in an'artificial stream for periods of up to 40 days and samples of the lateral musculature were subjected to histological examination. It was found that there was a highly significant increase in the percentage of red muscle present in the hindermost regions of the fish confined for 30 days or more in the stream. In subsequent exercise tests, it was shown that the FV50 was higher for fish conditioned for 40 days, but it was considered unlikely that this increase in swimming ability was as a direct result of changes in muscle composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号