首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycolysis occupies a central role in cellular metabolism, and is of particular importance for the catabolic production of ATP in protozoan parasites such as Leishmania and Trypanosoma. In these organisms pyruvate kinase plays a key regulatory role, and is unique in responding to fructose 2,6-bisphosphate as allosteric activator. The determination of the crystal structure of the first eukaryotic pyruvate kinase in the T-state (the inactive or 'tense' conformation of allosteric enzymes) is described. A comparison of the effector sites of the Leishmania and yeast enzymes reveals the structural basis for the different effector specificity. Two loops, comprising residues 443-453 and 480-489, adopt very different conformations in the two enzymes, and Lys-453 and His-480 that are a feature of trypanosomatid enzymes provide probable ligands for the 2-phospho group of the effector molecule. These and other differences offer an opportunity for the design of drugs that would exploit regulatory differences between parasite and host.  相似文献   

2.
The activity of pyruvate kinase of Leishmania mexicana is allosterically regulated by fructose 2,6-bisphosphate (F-2,6-P(2)), contrary to the pyruvate kinases from other eukaryotes that are usually stimulated by fructose 1,6-bisphosphate (F-1,6-P(2)). Based on the comparison of the three-dimensional structure of Saccharomyces cerevisiae pyruvate kinase crystallized with F-1,6-P(2) present at the effector site (R-state) and the L. mexicana enzyme crystallized in the T-state, two residues (Lys453 and His480) were proposed to bind the 2-phospho group of the effector. This hypothesis was tested by site-directed mutagenesis. The allosteric activation by F-2,6-P(2) appeared to be entirely abrogated in the mutated enzymes confirming our predictions.  相似文献   

3.
Pyruvate kinase (PK) is critical for the regulation of the glycolytic pathway. The regulatory properties of Escherichia coli were investigated by mutating six charged residues involved in interdomain salt bridges (Arg(271), Arg(292), Asp(297), and Lys(413)) and in the binding of the allosteric activator (Lys(382) and Arg(431)). Arg(271) and Lys(413) are located at the interface between A and C domains within one subunit. The R271L and K413Q mutant enzymes exhibit altered kinetic properties. In K413Q, there is partial enzyme activation, whereas R271L is characterized by a bias toward the T-state in the allosteric equilibrium. In the T-state, Arg(292) and Asp(297) form an intersubunit salt bridge. The mutants R292D and D297R are totally inactive. The crystal structure of R292D reveals that the mutant enzyme retains the T-state quaternary structure. However, the mutation induces a reorganization of the interface with the creation of a network of interactions similar to that observed in the crystal structures of R-state yeast and M1 PK proteins. Furthermore, in the R292D structure, two loops that are part of the active site are disordered. The K382Q and R431E mutations were designed to probe the binding site for fructose 1, 6-bisphosphate, the allosteric activator. R431E exhibits only slight changes in the regulatory properties. Conversely, K382Q displays a highly altered responsiveness to the activator, suggesting that Lys(382) is involved in both activator binding and allosteric transition mechanism. Taken together, these results support the notion that domain interfaces are critical for the allosteric transition. They couple changes in the tertiary and quaternary structures to alterations in the geometry of the fructose 1, 6-bisphosphate and substrate binding sites. These site-directed mutagenesis data are discussed in the light of the molecular basis for the hereditary nonspherocytic hemolytic anemia, which is caused by mutations in human erythrocyte PK gene.  相似文献   

4.
Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6'' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303–320) of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.  相似文献   

5.
Bond CJ  Jurica MS  Mesecar A  Stoddard BL 《Biochemistry》2000,39(50):15333-15343
We have analyzed the structural determinants of the allosteric activation of yeast pyruvate kinase (YPK) by mutational and kinetic analysis and initiated a structure-based design project to identify novel effectors that modulate its allosteric response by binding to the allosteric site for fructose-1,6-bisphosphate (FBP). The wild-type enzyme is strongly activated by fructose-1,6-bisphosphate and weakly activated by both fructose-1-phosphate and fructose-6-phosphate; the strength of the activation response is proportional to the affinity of the allosteric effector. A point mutation within the 6'-phosphate binding loop of the allosteric site (T403E) abolishes activation of the enzyme by fructose-1, 6-bisphosphate. The mutant enzyme is also not activated by F1P or F6P. The mutation alone (which incorporates a glutamic acid that is strictly conserved in mammalian M1 isozymes) slightly reduces cooperativity of substrate binding. Three novel compounds were identified that effect the allosteric regulation of YPK by FBP and/or act as novel allosteric activators of the enzyme. One is a physiologically important diphospho sugar, while the other two are hydrophobic compounds that are dissimilar to the natural effector. These results demonstrate that novel allosteric effectors may be identified using structure-based screening and are indicative of the potential of this strategy for drug discovery. Regulatory sites are generally more divergent than catalytic sites and therefore offer excellent opportunities for discrimination and specificity between different organisms or between different tissue types.  相似文献   

6.
Bezafibrate, an antilipidemic drug, is known as a potent allosteric effector of hemoglobin. The previously proposed mechanism for the allosteric potency of this drug was that it stabilizes and constrains the T-state of hemoglobin by specifically binding to the large central cavity of the T-state. Here we report a new allosteric binding site of fully liganded R-state hemoglobin for this drug. The high resolution crystal structure of horse carbonmonoxyhemoglobin in complex with bezafibrate reveals that the bezafibrate molecule lies near the surface of the E-helix of each alpha subunit and the complex maintains the quaternary structure of the R-state. Binding is caused by the close fit of bezafibrate into the binding pocket, which is composed of some hydrophobic residues and the heme edge, suggesting the importance of hydrophobic interactions. Upon binding of bezafibrate, the distance between Fe and the N epsilon(2) of distal His E7(alpha 58) is shortened by 0.22 A in the alpha subunit, whereas no significant structural changes are transmitted to the beta subunit. Oxygen equilibrium studies of R-state-locked hemoglobin with bezafibrate in a wet porous sol-gel indicate that bezafibrate selectively lowers the oxygen affinity of one type of subunit within the R-state, consistent with the structural data. These results disclose a new allosteric mechanism of bezafibrate and offer the first demonstration of how the allosteric effector interacts with R-state hemoglobin.  相似文献   

7.
The pyruvate kinase (PK) from a moderate thermophile, Geobacillus stearothermophilus, is an allosteric enzyme activated by AMP and ribose 5-phosphate but not fructose 1, 6-bisphosphate (FBP), which is a common activator of PKs. It has an extra C-terminal sequence (ECTS), which contains a highly conserved phosphoenolpyruvate (PEP) binding motif, but its function and structure remain unclear. To elucidate the structural characteristics of the effector-binding site and the ECTS, the crystal structure of the C9S/C268S mutant of the enzyme was determined at 2.4 A resolution. The crystal belonged to space group P6(2)22, with unit cell parameters a, b = 145.97 A, c = 118.03 A. The enzyme was a homotetramer and its overall domain structure was similar to the previously solved structures except that the ECTS formed a new domain (C' domain). The structure of the C' domain closely resembled that of the PEP binding domain of maize pyruvate phosphate dikinase. A sulphate ion was found in a pocket in the effector-binding C domain. This site corresponds to the 6-phosphate group-binding site in yeast PK bound FBP and seems to be the effector-binding site. Through comparison of the structure of the putative effector-binding site to that of the FBP binding site of the yeast enzyme, the structural basis of the effector specificity of the G. stearothermophilus PK is discussed.  相似文献   

8.
The structure of the cooperative hexameric enzyme ATP sulfurylase from Penicillium chrysogenum bound to its allosteric inhibitor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), was determined to 2.6 A resolution. This structure represents the low substrate-affinity T-state conformation of the enzyme. Comparison with the high substrate-affinity R-state structure reveals that a large rotational rearrangement of domains occurs as a result of the R-to-T transition. The rearrangement is accompanied by the 17 A movement of a 10-residue loop out of the active site region, resulting in an open, product release-like structure of the catalytic domain. Binding of PAPS is proposed to induce the allosteric transition by destabilizing an R-state-specific salt linkage between Asp 111 in an N-terminal domain of one subunit and Arg 515 in the allosteric domain of a trans-triad subunit. Disrupting this salt linkage by site-directed mutagenesis induces cooperative inhibition behavior in the absence of an allosteric effector, confirming the role of these two residues.  相似文献   

9.
Sandoval W  Isea R  Rodriguez E  Ramirez JL 《Gene》2008,424(1-2):25-32
Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C.  相似文献   

10.
Pyruvate kinase isoform M2 (PKM2) converts phosphoenolpyruvate (PEP) to pyruvate and plays an important role in cancer metabolism. Here, we show that posttranslational modifications and a patient-derived mutation regulate pyruvate kinase activity of PKM2 through modulating the conformation of the PKM2 tetramer. We determined crystal structures of human PKM2 mutants and proposed a “seesaw” model to illustrate conformational changes between an inactive T-state and an active R-state tetramers of PKM2. Biochemical and structural analyses demonstrate that PKM2Y105E (phosphorylation mimic of Y105) decreases pyruvate kinase activity by inhibiting FBP (fructose 1,6-bisphosphate)-induced R-state formation, and PKM2K305Q (acetylation mimic of K305) abolishes the activity by hindering tetramer formation. K422R, a patient-derived mutation of PKM2, favors a stable, inactive T-state tetramer because of strong intermolecular interactions. Our study reveals the mechanism for dynamic regulation of PKM2 by posttranslational modifications and a patient-derived mutation and provides a structural basis for further investigation of other modifications and mutations of PKM2 yet to be discovered.  相似文献   

11.
We report X-ray structures of pyruvate kinase from Leishmania mexicana (LmPYK) that are trapped in different conformations. These, together with the previously reported structure of LmPYK in its inactive (T-state) conformation, allow comparisons of three different conformers of the same species of pyruvate kinase (PYK). Four new site point mutants showing the effects of side-chain alteration at subunit interfaces are also enzymatically characterised. The LmPYK tetramer crystals grown with ammonium sulphate as precipitant adopt an active-like conformation, with sulphate ions at the active and effector sites. The sulphates occupy positions similar to those of the phosphates of ligands bound to active (R-state) and constitutively active (nonallosteric) PYKs from several species, and provide insight into the structural roles of the phosphates of the substrates and effectors. Crystal soaking in sulphate-free buffers was found to induce major conformational changes in the tetramer. In particular, the unwinding of the Aα6′ helix and the inward hinge movement of the B domain are coupled with a significant widening (4 Å) of the tetramer caused by lateral movement of the C domains. The two new LmPYK structures and the activity studies of site point mutations described in this article are consistent with a developing picture of allosteric activity in which localised changes in protein flexibility govern the distribution of conformer families adopted by the tetramer in its active and inactive states.  相似文献   

12.
The mechanism by which pyruvate kinase (PK) is allosterically activated by fructose-1,6-bisphosphate (FBP) is poorly understood. To identify residues key to allostery of yeast PK, a point mutation strategy was used. T403E and R459Q mutations in the FBP binding site caused reduced FBP affinity. Introducing positive charges at the 403, 458, and 406 positions in the FBP binding site had little consequence. The mutation Q299N in the A [bond] A subunit interface caused the enzyme response to ADP to be sensitive to FBP. The T311M A [bond] A interface mutant has a decreased affinity for PEP and FBP, and is dependent on FBP for activity. The R369A mutation in the C [bond] C interface only moderately influenced allostery. Creating an E392A mutation in the C [bond] C subunit interface eliminated all cooperativity and allosteric regulation. None of the seven A [bond] C domain interface mutations altered allostery. A model that includes a central role for E392 in allosteric regulation of yeast PK is proposed.  相似文献   

13.
The contribution of heterotropic effectors to hemoglobin allostery is still not completely understood. With the recently proposed global allostery model, this question acquires crucial significance, because it relates tertiary conformational changes to effector binding in both the R- and T-states. In this context, an important question is how far the induced conformational changes propagate from the binding site(s) of the allosteric effectors. We present a study in which we monitored the interdimeric interface when the effectors such as Cl-, 2,3-diphosphoglycerate, inositol hexaphosphate, and bezafibrate were bound. We studied oxy-Hb and a hybrid form (alphaFeO2)2-(betaZn)2 as the T-state analogue by monitoring heme absorption and Trp intrinsic fluorescence under hydrostatic pressure. We observed a pressure-dependent change in the intrinsic fluorescence, which we attribute to a pressure-induced tetramer to dimer transition with characteristic pressures in the 70-200-megapascal range. The transition is sensitive to the binding of allosteric effectors. We fitted the data with a simple model for the tetramer-dimer transition and determined the dissociation constants at atmospheric pressure. In the R-state, we observed a stabilizing effect by the allosteric effectors, although in the T-analogue a stronger destabilizing effect was seen. The order of efficiency was the same in both states, but with the opposite trend as inositol hexaphosphate > 2,3-diphosphoglycerate > Cl-. We detected intrinsic fluorescence from bound bezafibrate that introduced uncertainty in the comparison with other effectors. The results support the global allostery model by showing that conformational changes propagate from the effector binding site to the interdimeric interfaces in both quaternary states.  相似文献   

14.
T H Murcott  H Gutfreund    H Muirhead 《The EMBO journal》1992,11(11):3811-3814
The cooperative binding of the allosteric activator fructose-1,6-bisphosphate [Fru(1,6)P2] to yeast pyruvate kinase was investigated by equilibrium dialysis and fluorescence quench titration. The results show that yeast pyruvate kinase binds four molecules of Fru(1,6)P2 per tetramer and the observed fluorescence quench follows the binding of the ligand and not the cooperative T to R state transition. Additionally it is shown that the binding of Fru(1,6)P2 to yeast pyruvate kinase is compatible with the model of cooperativity that has been proposed and incorporates an intermediate state, R', with properties between those of the T and R states.  相似文献   

15.
Aspartokinase III (AKIII) from Escherichia coli catalyzes an initial commitment step of the aspartate pathway, giving biosynthesis of certain amino acids including lysine. We report crystal structures of AKIII in the inactive T-state with bound feedback allosteric inhibitor lysine and in the R-state with aspartate and ADP. The structures reveal an unusual configuration for the regulatory ACT domains, in which ACT2 is inserted into ACT1 rather than the expected tandem repeat. Comparison of R- and T-state AKIII indicates that binding of lysine to the regulatory ACT1 domain in R-state AKIII instigates a series of changes that release a "latch", the beta15-alphaK loop, from the catalytic domain, which in turn undergoes large rotational rearrangements, promoting tetramer formation and completion of the transition to the T-state. Lysine-induced allosteric transition in AKIII involves both destabilizing the R-state and stabilizing the T-state tetramer. Rearrangement of the catalytic domain blocks the ATP-binding site, which is therefore the structural basis for allosteric inhibition of AKIII by lysine.  相似文献   

16.
The structural stability of rabbit muscle pyruvate kinase was examined. The unfolding of pyruvate kinase was induced by guanidine hydrochloride, and the process was monitored by spectroscopic techniques (fluorescence and UV absorption) and hydrodynamic measurements (sedimentation velocity, sedimentation equilibrium, densimetry, and viscometry). The spectroscopic techniques revealed that the unfolding of pyruvate kinase induced by guanidine hydrochloride is not a simple cooperative process. This suggests that different regions of pyruvate kinase are unfolding with different efficiencies in response to the denaturant. These regions are most likely related to the domain structures observed by x-ray crystallography. In the presence of L-phenylalanine, the allosteric inhibitor, the denaturation process became more cooperative, and the enzyme dissociated and unfolded at a higher denaturant concentration. The binding of phenylalanine also induced a structural change in the enzyme, rendering it more susceptible to tryptic digestion. One of the peptides, the production rate of which was increased, was isolated and sequenced. Its N terminus is located at the interface between two domains, one of which contains the active site. This evidence indicates structural changes, probably involving domain-domain interaction, for pyruvate kinase in response to phenylalanine binding.  相似文献   

17.
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.  相似文献   

18.
In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.  相似文献   

19.
Klyuyeva A  Tuganova A  Popov KM 《Biochemistry》2008,47(32):8358-8366
Mitochondrial pyruvate dehydrogenase kinase 2 (PDHK2) phosphorylates the pyruvate dehydrogenase multienzyme complex (PDC) and thereby controls the rate of oxidative decarboxylation of pyruvate. The activity of PDHK2 is regulated by a variety of metabolites such as pyruvate, NAD (+), NADH, CoA, and acetyl-CoA. The inhibitory effect of pyruvate occurs through the unique binding site, which is specific for pyruvate and its synthetic analogue dichloroacetate (DCA). The effects of NAD (+), NADH, CoA, and acetyl-CoA are mediated by the binding site that recognizes the inner lipoyl-bearing domain (L2) of the dihydrolipoyl transacetylase (E2). Both allosteric sites are separated from the active site of PDHK2 by more than 20 A. Here we show that mutations of three amino acid residues located in the vicinity of the active site of PDHK2 (R250, T302, and Y320) make the kinase resistant to the inhibitory effect of DCA, thereby uncoupling the active site from the allosteric site. In addition, we provide evidence that substitutions of R250 and T302 can partially or completely uncouple the L2-binding site. Based on the available structural data, R250, T302, and Y320 stabilize the "open" and "closed" conformations of the built-in lid that controls the access of a nucleotide into the nucleotide-binding cavity. This strongly suggests that the mobility of ATP lid is central to the allosteric regulation of PDHK2 activity serving as a conformational switch required for communication between the active site and allosteric sites in the kinase molecule.  相似文献   

20.
The effect of the potential antidiabetic drug (-)(S)-3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1-ethyl-2-methyl-pyridine-3,5,6-tricarbox ylate (W1807) on the catalytic and structural properties of glycogen phosphorylase a has been studied. Glycogen phosphorylase (GP) is an allosteric enzyme whose activity is primarily controlled by reversible phosphorylation of Ser14 of the dephosphorylated enzyme (GPb, less active, predominantly T-state) to form the phosphorylated enzyme (GPa, more active, predominantly R-state). Upon conversion of GPb to GPa, the N-terminal tail (residues 5-22), which carries the Ser14(P), changes its conformation into a distorted 3(10) helix and its contacts from intrasubunit to intersubunit. This alteration causes a series of tertiary and quaternary conformational changes that lead to activation of the enzyme through opening access to the catalytic site. As part of a screening process to identify compounds that might contribute to the regulation of glycogen metabolism in the noninsulin dependent diabetes diseased state, W1807 has been found as the most potent inhibitor of GPb (Ki = 1.6 nM) that binds at the allosteric site of T-state GPb and produces further conformational changes, characteristic of a T'-like state. Kinetics show W1807 is a potent competitive inhibitor of GPa (-AMP) (Ki = 10.8 nM) and of GPa (+1 mM AMP) (Ki = 19.4 microM) with respect to glucose 1-phosphate and acts in synergism with glucose. To elucidate the structural features that contribute to the binding, the structures of GPa in the T-state conformation in complex with glucose and in complex with both glucose and W1807 have been determined at 100 K to 2.0 A and 2.1 A resolution, and refined to crystallographic R-values of 0.179 (R(free) = 0.230) and 0.189 (R(free) = 0.263), respectively. W1807 binds tightly at the allosteric site and induces substantial conformational changes both in the vicinity of the allosteric site and the subunit interface. A disordering of the N-terminal tail occurs, while the loop of chain containing residues 192-196 and residues 43'-49' shift to accommodate the ligand. Structural comparisons show that the T-state GPa-glucose-W1807 structure is overall more similar to the T-state GPb-W1807 complex structure than to the GPa-glucose complex structure, indicating that W1807 is able to transform GPa to the T'-like state already observed with GPb. The structures provide a rational for the potency of the inhibitor and explain GPa allosteric inhibition of activity upon W1807 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号