首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
The behavior of tidal flow in the riverine-forest type is investigated in the Aira-River mangrove area in Iriomote Island, Japan. In the mangrove swamp near the bank of the creek, a velocity component parallel to a tidal creek reduces greatly in the direction perpendicular to the creek. Based on this finding, it is theoretically suggested that the eddy viscosity in the mangrove swamp, which is caused by the interaction between mangrove vegetation and the shear stress resulting from the tidal flow in the creek, plays an important role in the hydrodynamics of the mangrove swamp.  相似文献   

2.
1. Aquatic plant stands are flexible, mesh‐like open structures that undergo modification in shape and experience a cascade of declining flow velocities and micro‐scale Reynolds numbers with increasing distance into the stands. It is not possible to define or measure the frontal area of this open flexible plant structure. Total wetted area was used as a reference area for drag because it can be measured with high accuracy and it was the most suitable measure of plant size impeding the flow and absorbing light for photosynthetic production. What is important is that it is made absolutely clear which type of reference area that is used. 2. Numerous important relationships in biology are open to discussion because of differences in dimensions between variables. Relating dimensionless drag coefficients to dimensionless Reynolds numbers resolve such discussions, but defining Reynolds numbers cause other problems. Relating drag coefficients to macro‐scale Reynolds numbers would result in exactly the same form of relationship as to water velocity because macro‐scale Reynolds numbers changed in direct proportion to water velocity in the experiments, while kinematic viscosity and characteristic length within species remained constant.  相似文献   

3.
2017年以来,广东省惠州市在考洲洋潮间带开展了大规模人工种植红树林生态修复工程,但考洲洋人工种植红树林湿地大型底栖动物群落的环境响应未见报道。根据2018-2019年四个季节在考洲洋盐洲大桥附近红树种植1-2年(X断面)和5-6年(Y断面)的两处湿地的大型底栖动物定量取样数据,分析了人工红树林湿地大型底栖动物的时空格局及其环境响应。方差分析表明,Y断面冬季的大型底栖动物群落的物种数、栖息密度、生物量、多样性指数(H'')和丰富度指数(d),以及夏季的栖息密度均随潮高(海平面高程)降低而增加;而Y断面冬季的均匀度指数(J)、夏季的H''J则是随潮高降低而减少。聚类(Cluster)和非度量多维尺度(nMDS)分析表明冬季和夏季X断面和Y断面大型底栖动物群落相似性较低,而春季和秋季X断面和Y断面大型底栖动物群落相似性较高。冬季和夏季最大潮高、潮差、大型底栖动物物种数、栖息密度、H''d较春季和秋季的高。红树种植1-2年的X断面大型底栖动物物种数、H''J低于种植5-6年的Y断面。上述结果证实潮汐和红树种植年限影响考洲洋红树林湿地大型底栖动物的群落结构,研究结果可为大型底栖动物多样性保护和生态修复提供基础资料。  相似文献   

4.
We model the dynamics of a tidal creek — mangrove swamp system. In the creek, a tidal asymmetry prevails. The ebb flow dominance at spring tides helps flush out the coarse sediment from the creek. Results from the numerical model suggest that the ebb dominance is due to friction in the mangrove forest and in turn this is controlled by the density of the vegetation. The tidal asymmetry of the current is negligible for a very small or a very large vegetation density, and is maximum for an intermediate vegetation density typical of that in undisturbed healthy mangroves.  相似文献   

5.
A coast in southern Vietnam, which is located in a wide and flat alluvial fan and neighbors tidal rivers fringed by wide mangrove swamps, has been eroded continuously by approximately 50 m/year since the early 20th century. Based on field observations and numerical experiments, it is inferred that this large scale erosion is caused by the transition of mangrove vegetation resulting from the long-term impact of humans since the late 19th century. This eroded coast is not in direct contact with mangrove swamps, but is strongly affected by the existence of mangrove forests through the intermediation of neighboring tidal rivers. Thus, with a view to coastal protection, it is argued that the mangrove vegetation in adjacent areas should be managed more sensitively.  相似文献   

6.
红树林湿地恢复技术的研究进展   总被引:11,自引:0,他引:11  
本文从红树林育苗造林技术、次生林改造技术和红树植物引种试种与种源选择的研究等方面试述红树林湿地恢复技术的研究进展,并针对我国的目前现状,提出今后亟待加强研究的如下几个方面:加强红树植物引种扩种,恢复植被,提高红树林生态工程质量的原理研究;监测外来引进种对我国红树林湿地的生态影响;研究半红树植物在沿海防护林体系工程建设中的作用;加强红树植物对潮汐水位适应能力的研究;开展红树人工林生态恢复过程中的综合定位观测等。  相似文献   

7.
Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30?cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10?cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.  相似文献   

8.
A digital elevation model describing topography, tide elevation and inundation degree and frequency of a mangrove forest in North Brazil is discussed in relation to existing phosphate and physicochemical data in waters of an adjacent tidal creek. Due to smooth topography, an increase of 20 cm in tidal height above average neap tides increases flooded area from about 50 to 80%. Analysis of the relationship between microtopography, tidal height and flooding rate showed that in the upper 60 cm of the mangrove forest, increases of 20 cm in topographical height resulted in a doubling of the inundation frequency. This can be particularly relevant for the analysis of nutrient mobilization and vegetation structure of infrequently inundated wetlands. Throughout the year, low-tide phosphate in creek water was inversely proportional to the maximum area flooded during high tide, this correlation being higher during the dry season. Similarly, the inverse relationship between flooded areas and low-tide/high-tide pH ratios was highly significant during the dry season and the beginning of the rainy season. Although the high correlations obtained are based on data pairs obtained at high and low tide, it has to clarified whether the association between inundation degree and creek water pH is relevant for the stability of P compounds in sediment on the short scale of a tidal cycle.  相似文献   

9.

Pollen assemblages closely reflect the local vegetation that characterizes the salinity status, providing useful analogs for paleoecologxical reconstruction in regional deposits. Palynological evidences of surface sediments from the Coringa mangrove wetland were correlated with the physicochemical and sediment salinity records to observe the relationship between them. The statistical analysis of the data obtained here revealed a marked horizontal salinity gradient from north to south.. In this study, ordination (detrended correspondence analysis) of palynomorph groups has identified a salinity gradient of 1.1 to 3.0 PSU from the north to the south in the wetland. High palynomorph deposition and lower salinity are observed along channel margins due to the mixing of estuarine water during the rainy season. The mudflats along the transects show a lower diversity of plants in the pollen record and high total dissolved solids (TDS) than commonly found in the coastal wetlands. The presence of scrubby halophytic vegetation in the upper saltmarsh and oligohaline-freshwater vegetation in the low tidal saline marshes is a zonation pattern related to the localized influence of freshwater conditions. Palynomarine Index (PMI) reveals the highest freshwater/tidal inundation along Ramannapalem due to the presence of numerous riverine channels while the remaining part of the wetland has restricted tidal inundation leading to the conversion of mangrove forests to salt pans and paddy fields. Thus, the health and productivity of the mangrove ecosystem are also governed by hydrodynamics, catchment land use, water discharge in the channels, and tidal flushing.

  相似文献   

10.
Based on a field observation at the Vinh Quang coast in northern Vietnam, the characteristics of wave reduction due to the drag force of one mangrove species, Sonneratia sp., were quantitatively analyzed. The reduction rate of sea waves in this area changed substantially with the tidal phase, due to the unique vertical configuration of Sonneratia sp. At the shallow range of water depth, since the shape of pneumatophores of Sonneratia sp. tapers off upward, the effect of drag force by these roots on the wave reduction decreased with the increase in the water level, resulting in a decrease in the rate of wave reduction. On the other hand, when water levels rose above the height of thickly spread branches and leaves of these trees, the rate of wave reduction increased again with an increase in the water level. Further, at this high range of water level, the rate of wave reduction depended strongly on the incident wave height. These results indicate that the thickly grown mangrove leaves effectively dissipate huge wave energy which occurs during storms such as typhoons, and protect coastal areas. Referring to the past studies, our results suggest that the hydrodynamic knowledge in various mangrove conditions such as the vertical configuration of mangrove species, their vegetation conditions, water depth, incident wave condition and the relationships between these factors should be further accumulated and then quantitatively formulated in order to protect coastal areas from severe sea waves.  相似文献   

11.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

12.
Strömungsanpassung des Pinguins beim Schwimmen unter Wasser   总被引:1,自引:0,他引:1  
Summary Penguins (Pygoscelis papua) swimming parallel to the glass screen of a large aquarium in Zoologischer Garten, Frankfurt, were filmed during deceleration phases during which their extremities were not moved relative to the trunk. Drag coefficients were determined using a newly developed method of analysis (the reciprocal value of velocity plotted as a function of time gives a linear curve during undisturbed deceleration). The frontal drag coefficient is 7·10–2, surface drag coefficient 4.4·10–3 and volume drag coefficient 3.1·10–2. The ratio of length to diameter is 4.2. The length from head to broadest part of trunk relative to body length is 0.48. These results are compared with technical hydro- and aerodynamic measurements found in literature. The body form of penguins appears to be well adapted to transporting unit mass with least resistance. Their frontal and volume drag coefficients cannot be further improved. The surface drag coefficient shows that, at Reynolds numbers of deceleration swimming (Re106), unusual effects need not be taken into account. This indicates that the boundary layer is partly laminar, partly turbulent as found in optimally stream-lined technical objects. We suppose that the smooth feathered surface of a penguin dampens boundary layer oscillations especially during fast swimming at Reynolds numbers of 107 and guarantees laminar flow over larger regions of the trunk.  相似文献   

13.
  1. Saltmarsh‐mangrove ecotones occur at the boundary of the natural geographic distribution of mangroves and salt marshes. Climate warming and species invasion can also drive the formation of saltmarsh‐mangrove mixing communities. How these coastal species live together in a “new” mixed community is important in predicting the dynamic of saltmarsh‐mangrove ecosystems as affected by ongoing climate change or human activities. To date, the understanding of species interactions has been rare on adult species in these ecotones.
  2. Two typical coastal wetlands were selected as cases to understand how mangrove and saltmarsh species living together in the ecotones. The leaves of seven species were sampled from these coastal wetlands based on their distribution patterns (living alone or coexisting) in the high tidal zone, and seven commonly used functional traits of these species were analyzed.
  3. We found niche separation between saltmarsh and mangrove species, which is probably due to the different adaptive strategies they adopted to deal with intertidal environments.
  4. Weak interactions between coexisting species were dominated in the high tidal zone of the two saltmarsh‐mangrove communities, which could be driven by both niche differentiation and neutral theory.
  5. Synthesis. Our field study implies a potential opportunity to establish a multispecies community in the high tidal zone of saltmarsh‐mangrove ecotones, where the sediment was characterized by low salinity and high nitrogen.
  相似文献   

14.
The one-dimensional Saint-Venant equations are modified to account for stem drag and volumetric displacement effects of dense emergent plants on free surface flow. The modified equations are solved with an implicit finite difference method to give velocities and depths for shallow flows through a vegetated wetland channel. Estimated flow profiles are used to investigate how vegetation density, downstream boundaries and aspect ratio affect detention time, an important parameter in determining nutrient and pollutant removal efficiencies of wetlands constructed to treat wastewater. Results show that free water surface wetlands may exhibit static, neutral or dynamic behavior. Under static conditions, the wetland behaves like a pond in which displacement effects caused by submerged plant mass invariably decrease detention times. Under dynamic conditions, stem drag induced by aquatic plants predominates and wetland detention times increase with vegetation density. These opposing responses are separated by a narrow neutral condition where the presence of vegetation has virtually no net effect on detention time. For a given flow rate and surface area, detention times and hence treatment efficiencies in vegetated free water surface wetlands can be managed to some degree by adjusting the downstream control or by changing the aspect ratio.  相似文献   

15.
Summary To exemplify relations between biology and hydrodynamics the Reynolds number range and the effects of viscosity and inertia in swimming and flying organisms is discussed. Comparing water beetles and penguins it is shown, that the technical drag coefficient is an adequate means to describe flow adaptation in animals. Compared to technical systems, especially the penguins' drag coefficient is astonishingly low. Furthermore, the question, why comparatively thick bodies in penguins and dolphins show rather low drag is discussed. Distributed boundary layer damping in dolphins and secretion of special high molecular slimes in fishes help to keep flow characteristics laminar. As an example of one easily understood thrust mechanism, the drag inducing pair of rowing legs in water beetles is morphologically and hydrodynamically analysed. Fish swimming is discussed as a locomotion principle using lift components. Thrust generation by the moving tail fin of a fish is analysed in detail. Coming back to the influence if Reynolds number, it is finally shown, how very small, bristle bearing swimming legs and wings of insects make use of viscosity effects for locomotion.  相似文献   

16.
为了掌握海南岛西海岸红树林软体动物多样性状况, 本文于2015-2016年对海南岛西海岸6个主要红树林分布区软体动物的种类组成、物种多样性和群落结构的时空变化进行了研究。共采集到软体动物57科201种, 主要优势种有珠带拟蟹守螺(Cerithidea cingulata)、绯拟沼螺(Assiminea latericea)、圆胖樱蛤(Pinguitellina cycladiformis)和斜肋齿蜷(Sermyla riqueti)等。年平均密度与平均生物量分别为324.13 ind./m²和142.88 g/m², 物种数、密度和生物量均高于北部湾沿岸的其他红树林。海南岛西海岸各红树林软体动物的密度和生物量均未呈现明显的季节变化, 软体动物密度存在空间上的显著差异。聚类分析结果显示, 在盐度、土壤结构和红树林群落存在差异的不同红树林, 软体动物种类组成相似度低。多因子AZTI海洋生物指数(M-AMBI)结果表明海南岛西海岸红树林软体动物群落未受明显扰动, 生态环境质量介于一般和优良之间, 但仍受到人类活动与外来植物入侵威胁, 因其在候鸟迁徙中的重要作用, 亟需加强管理与保护。  相似文献   

17.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   

18.
This paper presents a new salinity-secondary flow-approach (SSA) model for identifying areas likely to be colonized by mangrove species based on two indices: water salinity concentration and river secondary flow intensity, R/W (the ratio of radius of curvature to river width). The mangrove Kandelia obovata is spreading rapidly in the Tanshui River system and therefore resulting in flooding impact to riparian wetlands; however, few studies have examined the dispersal characteristics of this species on the reach scale. According to the literature review and our observation, the salinity is the major factor in determining the spreading capabilities of mangroves. In addition, the effect of secondary flow can also facilitate mangrove invasion through the creation of bare mudflats.The case study of the Tanshui River system shows that the SSA model can be used for the determination of the habitat requirements and thus the dispersal capabilities of K. obovata. The results of the study show that the optimum conditions for the growth and dispersal of K. obovata exist in waters with mean annual salinity levels that are higher than 5 ppt (parts per thousand). Although K. obovata can survive in brackish wetlands with mean annual salinity levels lower than 5 ppt, its spreading capability is impaired. In tidal freshwater wetlands with mean annual salinity levels that are lower than 0.1 ppt, K. obovata cannot survive. The study also found that the R/W lower than 3 led to large mudflats, which provide an ideal environment for the growth of mangroves, due to the secondary flow.It shows that the SSA model can identify the potential habitat of mangrove in tidal region, so it might help with not only estuarine wetland management but also mangrove restoration project, especially for the sea level rise effect and its impact on potential mangrove invasion.  相似文献   

19.
There is a conflict between nature conservation and thatching industry regarding the management of reedbeds. On one hand, reedbeds are of an economical importance by providing thatching material, on the other hand, they harbour several endangered species. Reedbeds are typically managed by winter cutting, but its impacts on biodiversity are poorly understood. Our aim was to study the effects of winter cutting on the habitat diversity and structural heterogeneity of wetlands in a lowland alkali landscape (East-Hungary). We tested the following hypotheses: (i) Both diversity of plant species and habitat diversity are lower in winter cut wetlands compared to unmanaged stands. (ii) The distribution of biomass (green biomass, litter and standing dead biomass) is more homogeneous in winter cut wetlands compared to unmanaged ones. We found that winter cutting decreased habitat diversity and structural heterogeneity at multiple scales. Number of plant species and all measures of habitat diversity (number of patches, vegetation types and the length of vegetation margins) had lower scores in cut wetlands than in unmanaged ones. We found that unmanaged wetlands harboured high amount of accumulated biomass and they also maintained high habitat diversity likely due to the heterogeneous distribution of the biomass. In unmanaged wetlands, biomass accumulation did not decrease habitat diversity and also contributed to a higher structural heterogeneity. In cut wetlands, expansion of reed was an important driver of the decrease in habitat diversity and structural heterogeneity. Reed expansion likely overrode fine-scale edaphic conditions (hydrology and salinity) in shaping vegetation patterns; thus we suggest to avoid intensive winter cutting.  相似文献   

20.
The surface area of mangrove ecosystems in Senegal have fluctuated substantially over several decades. Satellite data at 10 to 30-m resolution, which has been available since the 1980s, has allowed the mapping and quantification of these dynamics. However, the plant formations have reorganized internally; this has not been well-documented, possibly because there is no established method for detecting zonation of the Senegalese mangrove. This paper proposes a two-step method for mapping the zonation of the Saloum Delta mangrove. First, mangrove surfaces were detected using machine learning methods from an object-based time series. Finally, a typology was developed through object-based clustering using time-series metrics derived from the harmonic regression modeling of the vegetation fraction. A comparison with field data allowed us to determine the number of classes and discriminating variables. The results showed that the selected method resulted in an overall accuracy of 97.55% (Kappa = 95.42) for the land cover at 4 classes (Water, Mangrove, Salt flats, Other land covers), with an F1-Score of 98.91% for the mangroves. Second, our results suggest that the annual trend of the vegetation fraction at the object scale is effective in differentiating mangrove zonation into three classes based on canopy density and stand height (HM: High mangrove; LDM: Low and dense mangrove; LOM: Low and open mangrove). Finally, the temporal stability of the classes and uncertainty around the magnitudes of the plant fraction values per class were assessed by Bayesian inference. An overall accuracy of 85.5% can be expected to identify the zonation typology on an inter-annual scale. This mapping technique can be used to characterize the rate of change in zonation in response to environmental changes and to guide management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号