首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
1. Recording with glass micropipette electrodes inserted close to the synaptic region, in the presynaptic and in the postsynaptic fibers of the giant synapse in the stellate ganglion of the squid, has been accomplished. 2. The forms of the spike and of the synaptic potential are very much like those reported earlier (Bullock, 1948) from macroelectrodes. The crest time and the rate of fall are labile and depend on the state of fatigue, though the time of initiation of the postsynaptic potential does not. 3. It is concluded after examination of both intra- and extracellular recordings that there is a real synaptic delay of the order of 1 or 2 milliseconds at 15–20°C. 4. There is sometimes a very small and sometimes no visible deflection in the intracellular postsynaptic record attributable to the presynaptic spike. It is concluded that transmission cannot be electrical. 5. The amplitude of the postsynaptic potential can be controlled over some range by the amplitude of the presynaptic potential. 6. Hyperpolarization of the postsynaptic membrane results in increase in amplitude of spikes up to 200 millivolts, in increase in the membrane potential level at which the spike flares up, but in no considerable change in the amplitude in postsynaptic potential. 7. The postsynaptic potential can add to the late falling phase and the undershoot of an antidromic spike in the postfiber but cannot add to the crest or early part of the falling phase. The earliest part of the antidromic spike during which the postsynaptic potential can add is probably a period of refractoriness to electrical shock by analogy with the properties of the axon.  相似文献   

2.
Synaptic effects arising in the postsynaptic membrane during direct stimulation of single presynaptic fibers were investigated in experiments with parallel intracellular recording from giant reticulospinal axons and motoneurons of the river lamprey. Monosynaptic reticulospinal EPSPs were shown to consist of two components, electrical and chemical, differing in their time courses, amplitudes, sensitivities to calcium deficiency, and dynamic characteristics. One motoneuron may receive direct electrical inputs from several giant axons. Individual giant axons can act on motoneurons not only monosynaptically, but also through additional relays.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 390–396, July–August, 1977.  相似文献   

3.
Potential changes both in pre- and postsynaptic axons were recorded from the giant synapse of squid with intracellular electrodes. Synaptic current was also recorded by a voltage clamp method. Facilitation of postsynaptic potential caused by applying two stimuli several milliseconds apart was accompanied by an increase in the amplitude of the presynaptic action potential. Depression of the postsynaptic potential occurred without changes in the presynaptic action potential. Increase in the concentration of Ca in sea water caused an increase in amplitude of the synaptic current. On the other hand increase in Mg concentration decreased the amplitude of the synaptic current. In these cases no appreciable change in the presynaptic action potential was observed. Extracellularly recorded potential changes of the presynaptic axon showed mainly a positive deflexion at the synaptic region and a negative deflexion in the more proximal part of the presynaptic axon. Mechanism of synaptic transmission is discussed.  相似文献   

4.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

5.
Summary The fine structure of the synapse between the second-order giant fibre and the third order-giant fibre of the squid Doryteuphis bleekeri was studied by means of electron microscope. In the synaptic region, the two giant fibres are arranged side by side. Many small processes from the third-order giant fibre penetrate the common sheath which separats the adjacent giant axons making synaptic contact with the second order giant axon.The contact surface consists of opposing two plasma membranes of adjacent axons separated by a narrow space of 20–30 m in width. The synaptic membranes are more electron dense and thicker than the other part of the axon membrane. The synaptic vesicles are concentrated exclusively in the presynaptic axon.The fine structural differences between giant synapse in the stellate ganglion of the squid and the giant-to-motor giant synapse of the crayfish were discussed.This work was supported by Grant Number B-3348 from the National Institutes of Health, United States Public Health Service, Department of Health, Education and Welfare.  相似文献   

6.
1. Study was made of the action of 4-aminopyridine (5 X 10(-5) M) on synaptic transmission in the last abdominal ganglion of Periplaneta americana. The 'oil-gap' technique was used to record postsynaptic events in a single giant axon. 2. 4-AP quickly increased the 'background' of postsynaptic activity, which consisted of 'spontaneous' unitary EPSPs and IPSPs. Postsynaptic spikes were also propagated. 3. Both evoked EPSPs (stimulation of cercal nerve XI) and evoked IPSPs (stimulation of cercal nerve X) were greatly increased in amplitude although their duration (half-time) was unaltered. 4. 4-AP triggered presynaptic action potentials in the cercal nerves (recorded with external electrodes). These 'antidromic' potentials appeared singly or sometimes repetitively, especially after electrical stimulation of the cercal nerves. They were often in monosynaptic correlation with unitary EPSPs. 5. Neither the resting potential nor the postsynaptic membrane resistance was modified. 6. There were no changes in the equilibrium potentials of the ions involved in postsynaptic events. 7. The results may be essentially explained by an increase in transmitter release after 4-AP treatment, which may be partly the result of a rise in presynaptic terminal excitability, and partly the result of a lengthening of the presynaptic action potentials.  相似文献   

7.
1. The influence of electrical stimulation of the nucleus raphes magnus (RM) on spinal segmental systems were examined. 2. RM stimulation produced an initial increase and a subsequent suppression of the amplitude of both fiextor and extensor lumbar monosynaptic reflex potentials (MSRs). 3. Intracellular recordings were made from alpha-motoneurons of the common peroneal nerve (flexor) and the tibial nerve (extensor). RM stimulation evoked postsynaptic potentials with a time course similar to that of MSR facilitation. 4. RM stimulation inhibited the aggregate excitatory synaptic potential (EPSP) evoked by stimulation of group I afferent fibers without apparent changes in the motoneuronal membrane potential. 5. These data suggest that the RM-evoked biphasic effect on MSR consists of early facilitation due to EPSP, and late inhibition possibly due to presynaptic inhibition of group I afferent fibers.  相似文献   

8.
The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.  相似文献   

9.
We investigated how the physiological characteristics and synaptic activities of nonspiking giant interneurons (NGIs), which integrate sensory inputs in the brain and send synaptic outputs to oculomotor neurons innervating eyestalk muscles, changed after unilateral ablation of the statocyst in order to clarify neuronal mechanisms underlying the central compensation process in crayfish. The input resistance and membrane time constant in recovered animals that restored the original symmetrical eyestalk posture 2 weeks after operation were significantly greater than those immediately after operation on the operated side whereas in non-recovered animals only the membrane time constant showed a significant increase. On the intact side, both recovered and non-recovered animals showed no difference. The frequency of synaptic activity showed a complex pattern of change on both sides depending on the polarity of the synaptic potential. The synaptic activity returned to the bilaterally symmetrical level in recovered animals while bilateral asymmetry remained in non-recovered ones. These results suggest that the central compensation of eyestalk posture following unilateral impairment of the statocyst is subserved by not only changes in the physiological characteristics of the NGI membrane but also the activity of neuronal circuits presynaptic to NGIs.  相似文献   

10.
I have developed a detailed biophysical model of the chemical synapse which hosts voltage-dependent presynaptic ion channels and takes into account the capacitance of synaptic membranes. I find that at synapses with a relatively large cleft resistance (e.g., mossy fiber or giant calyx synapse) the rising postsynaptic current could activate, within the synaptic cleft, electrochemical phenomena that induce rapid widening of the presynaptic action potential (AP). This mechanism could boost fast Ca(2+) entry into the terminal thus increasing the probability of subsequent synaptic releases. The predicted difference in the AP waveforms generated inside and outside the synapse can explain the previously unexplained fast capacitance transient recorded in the postsynaptic cell at the giant calyx synapse. I propose therefore the mechanism of positive ephaptic feedback that acts between the postsynaptic and presynaptic cell contributing to the basal synaptic transmission at large central synapses. This mechanism could also explain the supralinear voltage dependence of EPSCs recorded at hyperpolarizing membrane potentials in low extracellular calcium concentration.  相似文献   

11.
Large, second-order neurons of locust ocelli, or L-neurons, make some output connections that transmit small changes in membrane potential and can sustain transmission tonically. The synaptic connections are made from the axons of L-neurons in the lateral ocellar tracts, and are characterized by bar-shaped presynaptic densities and densely packed clouds of vesicles near to the cell membrane. A cloud of vesicles can extend much of the length of this synaptic zone, and there is no border between the vesicles that are associated with neighboring presynaptic densities. In some axons, presynaptic densities are associated with discrete small clusters of vesicles. Up to 6% of the volume of a length of axon in a synaptic zone can be occupied with a vesicle cloud, packed with 4.5 to 5.5 thousand vesicles per microm(3). Presynaptic densities vary in length, from less than 70 nm to 1.5 microm, with shorter presynaptic densities being most frequent. The distribution of vesicles around short presynaptic densities was indistinguishable from that around long presynaptic densities, and vesicles were distributed in a similar way right along the length of a presynaptic density. Within the cytoplasm, vesicles are homogeneously distributed within a cloud. We found no differences in the distribution of vesicles in clouds between locusts that had been dark-adapted and locusts that had been light-adapted before fixation.  相似文献   

12.
Action potential propagation in axons with bifurcations involving short collaterals with synaptic boutons has been simulated using SPICE, a general purpose electrical circuit simulation program. The large electrical load of the boutons may lead to propagation failure at otherwise uncritical geometric ratios. Because the action potential gradually fails while approaching the branch point, the electrotonic spread of the failing action potential cannot depolarize the terminal boutons above an assumed threshold of 20 mV (Vrest = 0 mV) for the presynaptic calcium inflow, and therefore fails to evoke transmitter release even for boutons attached at short collaterals. For even shorter collaterals the terminal boutons can again be activated by the spread of passive current reflected at the sealed end of the bouton which increases the membrane potential above firing threshold. The action potential is then propagated in anterograde fashion into the main axon and may activate the terminal bouton on the other collateral. Differential activation of the synaptic boutons can be observed without repetitive activation of the main axon and with the assumption of uniform membrane properties. Axon enlargements above a critical size at branch points can increase the safety factor for propagation significantly and may serve a double function: they can act both as presynaptic boutons and as boosters, facilitating invasion of the action potential into the terminal arborizations. The architecture of the terminal arborizations has a profound effect on the activation pattern of synapses, suggesting that terminal arborizations not only distribute neural information to postsynaptic cells but may also be able to process neural information presynaptically.  相似文献   

13.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about -20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of -13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing "backwards" across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

14.
The proteins in the perfusate collected from intracellularly perfused squid giant axons were analyzed after being labeled with radioactive 125I-labeled Bolton-Hunter reagent. The rate of protein release into the perfusate was found to be increased by the following electrophysiological manipulations of the axons: (1) repetitive electrical stimulation at 60 Hz in axons perfused with normal potassium fluoride-containing solution or at 0.125 Hz in axons perfused with tetraethylammonium containing solution, (2) perfusion with 4-amino-pyridine solution which induces spontaneous electrical activity in the axon, and (3) depolarization of the axon induced by raising the external potassium concentration. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the proteins released under these conditions yielded molecular weight profiles different from those of the extruded axoplasmic proteins. These observations indicate that there exists, in close association with the axonal membrane, a particular group of proteins, the solubility of which is readily affected by changes in the state of the membrane.  相似文献   

15.
Synapses in explant cultures of fetal rat neocortex at day 18 in vitro were stimulated by veratridine (10?4M) for 20 min. The cultures were subsequently processed for electron microscopy and the synapses were analyzed by quantitative techniques, incorporating set mathematical treatment. The mean values of area, perimeter, and form factor of the presynaptic elements significantly increased following veratridine stimulation, compared to the values of control synapses. The length of the postsynaptic thickening also increased, while synaptic curvature did not change significantly in the veratridine group. A fivefold reduction was observed in the mean number of synaptic vesicles per presynaptic element and in the vesicle-terminal area ratio, following veratridine stimulation. The cytoplasm-terminal area ratio and the occurrence of vacuoles/cisternae significantly increased after veratridine application. Planar measurement of membranes (boundary length) of different presynaptic organelles revealed that the total membrane did not change significantly in the veratridine group. The data indicated an increase in volume and swelling of the pre- and postsynaptic elements, considerable depletion of synaptic vesicles, and preservation of the total presynaptic membrane following veratridine stimulation in nerve tissue culture.  相似文献   

16.
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.  相似文献   

17.
A study of activity recorded with intracellular micropipettes was undertaken in the caudal abdominal ganglion of the crayfish in order to gain information about central fiber to fiber synaptic mechanisms. This synaptic system has well developed integrative properties. Excitatory post-synaptic potentials can be graded, and synaptic potentials from different inputs can sum to initiate spike discharge. In most impaled units, the spike discharge fails to destroy the synaptic potential, thereby allowing sustained depolarization and multiple spike discharge following single pulse stimulation to an afferent input. Some units had characteristics which suggest a graded threshold for spike generation along the post-synaptic fiber membrane. Other impaled units responded to afferent stimulation with spike discharges of two distinct amplitudes. The smaller or "abortive" spikes in such units may represent non-invading activity in branches of the post-synaptic axon. On a few occasions one afferent input was shown to inhibit the spike discharge initiated by another presynaptic input.  相似文献   

18.
The effects of batrachotoxin (BTX) on the membrane potential and conductances of squid giant axons have been studied by means of intracellular microelectrode recording, internal perfusion, and voltage clamp techniques. BTX (550–1100 nM) caused a marked and irreversible depolarization of the nerve membrane, the membrane potential being eventually reversed in polarity by as much as 15 mv. The depolarization progressed more rapidly with internal application than with external application of BTX to the axon. External application of tetrodotoxin (1000 nM) completely restored the BTX depolarization. Removal or drastic reduction of external sodium caused a hyperpolarization of the BTX-poisoned membrane. However, no change in the resting membrane potential occurred when BTX was applied in the absence of sodium ions in both external and internal phases. These observations demonstrate that BTX specifically increases the resting sodium permeability of the squid axon membrane. Despite such an increase in resting sodium permeability, the BTX-poisoned membrane was still capable of undergoing a large sodium permeability increase of normal magnitude upon depolarizing stimulation provided that the membrane potential was brought back to the original or higher level. The possibility that a single sodium channel is operative for both the resting sodium, permeability and the sodium permeability increase upon stimulation is discussed.  相似文献   

19.
Patients with akinesia benefit from chronic high frequency stimulation (HFS) of the subthalamic nucleus (STN). Among the mechanisms contributing to the therapeutic success of HFS-STN might be a suppression of activity in the output region of the basal ganglia. Indeed, recordings in the substantia nigra pars reticulata (SNr) of fully adult mice revealed that HFS-STN consistently produced a reduction of compound glutamatergic excitatory postsynaptic currents at a time when the tetrodotoxin-sensitive components of the local field potentials had already recovered after the high frequency activation. These observations suggest that HFS-STN not only alters action potential conduction on the way towards the SNr but also modifies synaptic transmission within the SNr. A classical conditioning-test paradigm was then designed to better separate the causes from the indicators of synaptic depression. A bipolar platinum-iridium macroelectrode delivered conditioning HFS trains to a larger group of fibers in the STN, while a separate high-ohmic glass micropipette in the rostral SNr provided test stimuli at minimal intensity to single fibers. The conditioning-test interval was set to 100 ms, i.e. the time required to recover the excitability of subthalamo-nigral axons after HFS-STN. The continuity of STN axons passing from the conditioning to the test sites was examined by an action potential occlusion test. About two thirds of the subthalamo-nigral afferents were occlusion-negative, i.e. they were not among the fibers directly activated by the conditioning STN stimulation. Nonetheless, occlusion-negative afferents exhibited signs of presynaptic depression that could be eliminated by blocking GABA(B) receptors with CGP55845 (1 µM). Further analysis of single fiber-activated responses supported the proposal that the heterosynaptic depression of synaptic glutamate release during and after HFS-STN is mainly caused by the tonic release of GABA from co-activated striato-nigral afferents to the SNr. This mechanism would be consistent with a gain-of-function hypothesis of DBS.  相似文献   

20.
CPG15 (aka neuritin) is an activity-induced GPI-anchored axonal protein that promotes dendritic and axonal growth, and accelerates synaptic maturation in vivo. Here we show that CPG15 is distributed inside axons and on the axon surface. CPG15 is trafficked to and from the axonal surface by membrane depolarization. To assess CPG15 trafficking in vivo, we expressed an ecliptic pHluorin (EP)-CPG15 fusion protein in optic tectal explants and in retinal ganglion cells of intact Xenopus tadpoles. Depolarization by KCl increased EP-CPG15 fluorescence on axons. Intraocular kainic acid (KA) injection rapidly increased cell-surface EP-CPG15 in retinotectal axons, but coinjection of TTX and KA did not. Consistent with this, we find that intracellular CPG15 is localized to vesicles and endosomes in presynaptic terminals and colocalizes with synaptic vesicle proteins. The results indicate that the delivery of the neurotrophic protein CPG15 to the axon surface can be regulated on a rapid time scale by activity-dependent mechanisms in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号