首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Mud1 (lac Apr) insertion has been isolated in a delta (lac)recA+ lexA3(Ind-)rpoB87 gyrA87 mutant of Escherichia coli resulting in a decrease in mitomycin C tolerance and an increase in post-mitomycin C DNA degradation. The mitomycin C sensitivity of the insertion mutant is not further increased by substituting either the rpoB87 or the gyrA mutation by the respective wild-type alleles. However, when both rpoB87 and gyrA87 mutations are replaced by rpoB+ and gyrA+ the strain becomes hypersensitive to mitomycin C. Inactivation of recA in the insertion mutant has no effect on its mitomycin C sensitivity provided both rpoB87 and gyrA87 are present. When either or both of the mutations is/are replaced by the wild-type allele inactivation of recA renders the strain hypersensitive to mitomycin C. The locus of Mud1 (lac Apr) insertion, designated sir (SOS-independent repair), has been mapped between 57 and 61 min on the E. coli linkage map. Expression of the sir gene seems to be constitutive and not enhanced by mitomycin C. These results are discussed in relation to the SOS-independent repair of mitomycin C-induced DNA damage reported earlier.  相似文献   

2.
3.
E Garí  L Bossi  N Figueroa-Bossi 《Genetics》2001,159(4):1405-1414
A class of gyrase mutants of Salmonella enterica mimics the properties of bacteria exposed to quinolones. These mutants suffer spontaneous DNA breakage during normal growth and depend on recombinational repair for viability. Unlike quinolone-treated bacteria, however, they do not show accumulation of cleavable gyrase-DNA complexes. In recA or recB mutant backgrounds, the temperature-sensitive (ts) allele gyrA208 causes rapid cell death at 43 degrees. Here, we isolated "suppressor-of-death" mutations, that is, secondary changes that allow a gyrA208 recB double mutant to survive a prolonged exposure to 43 degrees and subsequently to form colonies at 28 degrees. In most isolates, the secondary change was itself a ts mutation. Three ts alleles were mapped in genes coding for amino acyl tRNA synthetases (alaS, glnS, and lysS). Allele alaS216 completely abolished DNA breakage in a gyrA208 recA double mutant. Likewise, treating this mutant with chloramphenicol prevented death and DNA damage at 43 degrees. Additional suppressors of gyrA208 lethality include rpoB mutations and, surprisingly, icd mutations inactivating isocitrate dehydrogenase. We postulate that the primary effect of the gyrase alteration is to hamper replication fork movement. Inhibiting DNA replication under conditions of continuing macromolecular synthesis ("unbalanced growth") activates a mechanism that causes DNA breakage and cell death, reminiscent of "thymineless" lethality.  相似文献   

4.
The uvrD gene in Escherichia coli encodes a 720-amino-acid 3'-5' DNA helicase which, although nonessential for viability, is required for methyl-directed mismatch repair and nucleotide excision repair and furthermore is believed to participate in recombination and DNA replication. We have shown in this study that null mutations in uvrD are incompatible with lon, the incompatibility being a consequence of the chronic induction of SOS in uvrD strains and the resultant accumulation of the cell septation inhibitor SulA (which is a normal target for degradation by Lon protease). uvrD-lon incompatibility was suppressed by sulA, lexA3(Ind(-)), or recA (Def) mutations. Other mutations, such as priA, dam, polA, and dnaQ (mutD) mutations, which lead to persistent SOS induction, were also lon incompatible. SOS induction was not observed in uvrC and mutH (or mutS) mutants defective, respectively, in excision repair and mismatch repair. Nor was uvrD-mediated SOS induction abolished by mutations in genes that affect mismatch repair (mutH), excision repair (uvrC), or recombination (recB and recF). These data suggest that SOS induction in uvrD mutants is not a consequence of defects in these three pathways. We propose that the UvrD helicase participates in DNA replication to unwind secondary structures on the lagging strand immediately behind the progressing replication fork, and that it is the absence of this function which contributes to SOS induction in uvrD strains.  相似文献   

5.
Escherichia coli rnhA mutants lacking RNase HI chronically express the SOS response (T. Kogoma, X. Hong, G. W. Cadwell, K. G. Barnard, and T. Asai, Biochimie 75:89-99, 1993). Seventeen rpoB (Rifr) mutant alleles, which encode altered beta subunits of RNA polymerase, giving rise to resistance to rifampin, were screened for the ability to enhance or diminish constitutive expression of the SOS response in rnhA mutants. Two mutations, rpoB3595 and rpoB2, were found to enhance the SOS response 5- and 2.5-fold, respectively, only when RNase HI is absent. These mutations rendered rnhA mutant cells very sensitive to broth; i.e., the plating efficiency of the double mutants was drastically reduced when tested on broth plates. Two mutations, rpoB8 and rpoB3406, were found to diminish constitutive SOS expression in rnhA mutants by 43 and 30%, respectively. It was suggested that RNA polymerase may have a property that influences the size of DNA-RNA hybrids, the frequency of their formation, or both and that the property resides at least in part in the beta subunit of the polymerase.  相似文献   

6.
The induction of the SOS response by H2O2 was measured in Escherichia coli by means of a sfiA::lacZ operon fusion. The effects of mutations in genes involved in DNA repair or DNA metabolism on the SOS response were investigated. We found that in an uvrA mutant, H2O2 induced the SOS response at lower concentrations than in the uvr+ parent strain, indicating that some lesions induced by H2O2 may be repaired by the uvrABC-dependent excision repair system. A nth mutation, yielding deficiency in thymine glycol DNA glycosylase, had no detectable effect on SOS induction, indicating that thymine glycol, a DNA lesion expected to be induced by H2O2, does not participate detectably in the induction of the SOS response by this chemical under our conditions. H2O2 still induced the SOS response in a dnaC(Ts) uvrA double mutant under conditions in which no DNA replication proceeds, suggesting that this chemical induces DNA strand breaks. Induction of the SOS response by H2O2 was also assayed in various mutants affected in genes suspected to be important for protection against oxidative stress. Mutations in the catalase genes, katE and katG, had only minor effects. However, in an oxyR deletion mutant, in which the adaptative response to H2O2 does not occur, SOS induction occurred at much lower H2O2 concentrations than in the oxyR+ parent strain. These results indicate that some enzymes regulated by the oxyR gene are, under our conditions, more important than catalase for protection against the H2O2-induced DNA damages which trigger the SOS response.  相似文献   

7.
We examined, in Escherichia coli, the influence of recA mutant alleles on the level of quinolone resistance promoted by mutations in the gyrA gene. We found that the recA142 mutation, abolishing all the activities of RecA protein, greatly reduced the level of resistance to the quinolone ciprofloxacin, whereas the recA430 allele affecting the SOS inducing ability of RecA, reduced ciprofloxacin resistance to a lesser extent. The recA142 mutation did not cause enhancement of ciprofloxacin induced DNA breakage in gyrA mutants, indicating that the stabilization of DNA-gyrase complexes by the quinolone is not influenced by a RecA mutant protein. We suggest that RecA protein plays a role in the repair of quinolone damage, principally through a recombinational mechanism and, to a lesser degree, through the induction of the SOS response.  相似文献   

8.
In Escherichia coli, the miniF plasmid CcdB protein is responsible for cell death when its action is not prevented by polypeptide CcdA. We report the isolation, localization, sequencing and properties of a bacterial mutant resistant to the cytotoxic activity of the CcdB protein. This mutation is located in the gene encoding the A subunit of topoisomerase II and produces an Arg462----Cys substitution in the amino acid sequence of the GyrA polypeptide. Hence, the mutation was called gyrA462. We show that in the wild-type strain, the CcdB protein promotes plasmid linearization; in the gyrA462 strain, this double-stranded DNA cleavage is suppressed. This indicates that the CcdB protein is responsible for gyrase-mediated double-stranded DNA breakage. CcdB, in the absence of CcdA, induces the SOS pathway. SOS induction is a biological response to DNA-damaging agents. We show that the gyrA462 mutation suppresses this SOS activation, indicating that SOS induction is a consequence of DNA damages promoted by the CcdB protein on gyrase-DNA complexes. In addition, we observe that the CcdBS sensitive phenotype dominates over the resistant phenotype. This is better explained by the conversion, in gyrA+/gyrA462 merodiploid strains, of the wild-type gyrase into a DNA-damaging agent. These results strongly suggest that the CcdB protein, like quinolone antibiotics and a variety of antitumoral drugs, is a DNA topoisomerase II poison. This is the first proteinic poison-antipoison mechanism that has been found to act via the DNA topoisomerase II.  相似文献   

9.
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA (Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.  相似文献   

10.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that effectively inhibit both induced and spontaneous mutations. We have shown previously that VAN and CIN reduced the spontaneous mutant frequency in Salmonella TA104 (hisG428, rfa, ΔuvrB, pKM101) by approximately 50% and that both compounds significantly reduced mutations at GC sites but not at AT sites. Previous studies have suggested that VAN and CIN may reduce mutations in bacterial model systems by modulating DNA repair pathways, particularly by enhancing recombinational repair. To further explore the basis for inhibition of spontaneous mutation by VAN and CIN, we have determined the effects of these compounds on survival and mutant frequency in five Escherichia coli strains derived from the wild-type strain NR9102 with different DNA repair backgrounds. At nontoxic doses, both VAN and CIN significantly reduced mutant frequency in the wild-type strain NR9102, in the nucleotide excision repair-deficient strain NR11634 (uvrB), and in the recombination-proficient but SOS-deficient strain NR11475 (recA430). In contrast, in the recombination-deficient and SOS-deficient strain NR11317 (recA56), both VAN and CIN not only failed to inhibit the spontaneous mutant frequency but actually increased the mutant frequency. In the mismatch repair-defective strain NR9319 (mutL), only CIN was antimutagenic. Our results show that the antimutagenicity of VAN and CIN against spontaneous mutation required the RecA recombination function but was independent of the SOS and nucleotide excision repair pathways. Thus, we propose the counterintuitive notion that these antimutagens actually produce a type of DNA damage that elicits recombinational repair (but not mismatch, SOS, or nucleotide excision repair), which then repairs not only the damage induced by VAN and CIN but also other DNA damage—resulting in an antimutagenic effect on spontaneous mutation.  相似文献   

11.
12.
We analyzed the Bacillus subtilis SOS response using Escherichia coli LexA protein as a probe to measure the kinetics of SOS activation and DNA repair in wild-type and DNA repair-deficient strains. By examining the effects of DNA-damaging agents that produce the SOS inducing signal in E. coli by three distinct pathways, we obtained evidence that the nature of the SOS inducing signal has been conserved in B. subtilis. In particular, we used the B. subtilis DNA polymerase III inhibitor, 6-(p-hydroxyphenylazo)-uracil, to show that DNA replication is required to generate the SOS inducing signal following UV irradiation. We also present evidence that single-stranded gaps, generated by excision repair, serve as part of the UV inducing signal. By assaying the SOS response in B. subtilis dinA, dinB, and dinC mutants, we identified distinct deficiencies in SOS activation and DNA repair that suggest roles for the corresponding gene products in the SOS response.  相似文献   

13.
We have identified a new class of DNA gyrase mutants of Salmonella typhimurium that show chronic derepression of the SOS regulon. Thus, these mutants mimic the response of wild-type cells to gyrase inhibitors of the quinolone family. SOS induction by conditional lethal mutations gyrA208 or gyrB652, like that mediated by quinolones, is completely dependent on the function of the recB gene product. Introduction of recA or recB null mutations into these strains exacerbates their temperature-sensitive phenotype and prevents growth at the otherwise permissive temperature of 37°C. Selection of suppressors that concomitantly restore growth at 37°C and SOS induction in a recB? background yielded mutations that relieve the RecB requirement for homologous recombination; namely, sbcB mutations as well as mutations at a new locus that was named sbcE. Such mutations also restore SOS induction in quinolone-treated gyr+recB? strains. These findings indicate that Rec functions are needed for growth of the gyrase mutants at 37°C and suggest that recombinational repair intermediates constitute the SOS-inducing signal in the mutants as well as in quinolone-treated wild-type bacteria. Unlike quinolones, however, the gyr mutations described in this study do not cause detectable accumulation of ‘cleavable’ gyrase–DNA complexes in plasmid or chromosomal DNA. Yet gyrA208 (the only allele tested) was found to trigger RecB-mediated reckless degradation of chromosomal DNA in recA? cells at restrictive temperatures. Indirect evidence suggests that double-stranded DNA ends, entry sites for the RecBCD enzyme, are generated in the gyr mutants by the breakage of DNA-replication forks. We discuss how this could occur and how recombinational rescue of collapsed replication forks could account for cell survival (and SOS induction) in the gyr mutants as well as in quinolone-treated bacteria.  相似文献   

14.
The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light-treated cells, nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA, RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms.  相似文献   

15.
The 2.5-kilobase pair poly(purine.pyrimidine) (poly(R.Y)) tract present in intron 21 of the polycystic kidney disease 1 (PKD1) gene has been proposed to contribute to the high mutation frequency of the gene. To evaluate this hypothesis, we investigated the growth rates of 11 Escherichia coli strains, with mutations in the nucleotide excision repair, SOS, and topoisomerase I and/or gyrase genes, harboring plasmids containing the full-length tract, six 5'-truncations of the tract, and a control plasmid (pSPL3). The full-length poly(R.Y) tract induced dramatic losses of cell viability during the first few hours of growth and lengthened the doubling times of the populations in strains with an inducible SOS response. The extent of cell loss was correlated with the length of the poly(R.Y) tract and the levels of negative supercoiling as modulated by the genotype of the strains or drugs that specifically inhibited DNA gyrase or bound to DNA directly, thereby affecting conformations at specific loci. We conclude that the unusual DNA conformations formed by the PKD1 poly(R.Y) tract under the influence of negative supercoiling induced the SOS response pathway, and they were recognized as lesions by the nucleotide excision repair system and were cleaved, causing delays in cell division and loss of the plasmid. These data support a role for this sequence in the mutation of the PKD1 gene by stimulating repair and/or recombination functions.  相似文献   

16.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

17.
To examine whether base excision repair suppresses mutations induced by oxidized deoxyribonucleotide 5'-triphosphates in the nucleotide pool, 8-hydroxy-dGTP (8-OH-dGTP) and 2-hydroxy-dATP were introduced into Escherichia coli strains deficient in endonucleases III (Nth) and VIII (Nei) and MutY, and mutations in the chromosomal rpoB gene were analyzed. The spontaneous rpoB mutant frequency was also examined in mutT/nth and mutT/nei strains, to assess the influence on the mutations induced by the endogenous 8-OH-dGTP accumulated in the mutT mutant. The mutations induced by exogenous 2-hydroxy-dATP were similar in all of the strains tested. Exogenous 8-OH-dGTP increased the rpoB mutant frequency more efficiently in the nth strain than that in the wild-type strain. The spontaneous mutant frequency in the mutT/nth strain was 2-fold higher than that in the mutT strain. These results suggest that E. coli endonuclease III also acts as a defense against the mutations caused by 8-OH-dGTP in the nucleotide pool.  相似文献   

18.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.  相似文献   

19.
Sublethal concentrations of formic acid (10 mmol/l) and propionic acid (5 mmol/l) at pH 5.0 preferentially inhibit DNA synthesis and stop cell multiplication in the absence of a corresponding cessation in the increase of culture turbidity. The possibility that the acids induce the SOS response by starving cells of thymine or by causing physical damage to the DNA molecule has now been investigated. Accumulation of thymine into the cytoplasm of whole cells was not inhibited by either acid. Mutants defective in excision repair ( uvrA6 ), recombination repair ( recA56 ) and polymerase activity ( polA1 ) were not more sensitive to the acids than their isogenic parent. No significant increase in cell length was observed from measurements of transmission electron microscope images of acid-treated cells. It is concluded, therefore, that sublethal concentrations of formic and propionic acid inhibit DNA synthesis without physically damaging DNA molecule, or starving the cell of essential thymine or otherwise inducing an SOS response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号