首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A group of plant proteins, expansins, have been identified as wall-loosening factors and as facilitators of cell expansion in vivo. The root knot nematode Meloidogyne javanica establishes a permanent feeding site composed of giant cells surrounded by gall tissue. We used quantitative PCR and in situ localization to demonstrate the induction of a tomato (Lycopersicon esculentum cv. VF36) expansin (LeEXPA5) expression in gall cells adjacent to the nematode feeding cells. To further characterize the biological role of LeEXPA5 we have generated LeEXPA5-antisense transgenic roots. The ability of the nematode to establish a feeding site and complete its life cycle, the average root cell size and the rate of root elongation were determined for the transgenic roots, as well as the level of LeEXPA5 expression in non-infected and nematode-infected roots. Our results demonstrated that a decrease of LeEXPA5 expression reduces the ability of the nematode to complete its life cycle in transgenic roots. We suggest that a plant-originated expansin is necessary for a successful parasitic nematode–plant interaction.  相似文献   

2.
3.
4.
5.
Summary On colliery heaps in northern France, a tall grassland community dominated by Arrhenatherum elatius, give place to a thin grassland community in which Hieracium pilosella is very abundant. It has been claimed that Hieracium pilosella is an allelopathic species and this phenomenon has been investigated as an explanation of this phase of plant succession. The importance of osmotic pressure in tested plant extracts is demonstrated and may be responsible for presumed allelopathy. Two phytotoxic compounds have been revealed in roots+rhizomes of Hieracium pilosella (umbelliferon and apigenin-glucoside). A third phytotoxic compound was exuded by roots in hydroponic cultures (7-glucoside-umbelliferon or skimin). However no toxicity of soil has been found and no phytotoxic compounds appeared to be present in the soil under Hieracium pilosella. Experimental mixed cultures (sterile or non-sterile conditions) reveal suppression of Hieracium pilosella by Arrhenatherum elatius rather than the reverse. Allelopathy cannot be invoked to explain this plant succession.  相似文献   

6.
Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5–5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5–5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5–5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS.  相似文献   

7.
Glaucocalyxin (Gla) A–C are major ent-kaurane diterpenoids isolated from Isodon japonicus var. glaucocalyx (Maxim.) H. W. Li. This study investigated the possible interference of these diterpenoids with root growth and its mechanism of action in lettuce (Lactuca sativa L.) seedlings. Results indicated the dual stimulatory and inhibitory effects of Gla A and B on root growth and their phytotoxic effects on root hair development. The promotion of root growth by lower levels of Gla A and B (20–40 μM) resulted from enhanced cell length and increased mitotic activity. However, higher concentrations (80–200 μM) of Gla A and B had inhibitory effects. In addition, Gla A and B inhibited root hair development of lettuce seedlings in a dose-dependent manner at concentrations between 20 and 200 μM. Exposure of lettuce roots to Gla A and B at 200 μM increased levels of malondialdehyde and the generation of O 2 ·? , indicating lipid peroxidation and induction of oxidative stress. Activities of the antioxidant enzymes superoxide dismutase, catalase, and peroxidase were significantly elevated. Reactive oxygen species (ROS) scavengers dihydroxybenzene disulfonic acid (Tiron) and dimethylthiourea at 100 μM could efficiently alleviate the phytotoxicity induced by Gla A and B at 200 μM. These results demonstrated that the deleterious effect of Gla A and B at higher concentrations (80–200 μM) on roots may occur through the imposition of oxidative stress on cell growth and cell division. Due to the lack of an α,β-unsaturated ketone in α-methylenecyclopentanone moiety, Gla C could not induce ROS generation and exhibited no effect on the roots, even at the highest concentration (200 μM). Therefore, the α-methylenecyclopentanone moiety in the ent-kaurene diterpenoids was presented as an essential possible active center for the phytotoxicity.  相似文献   

8.
Growth and electrophysiological studies in roots of intact diclofop-methyl susceptible and resistant seedlings were conducted to test the hypothesis that the herbicide acts primarily as a proton ionophore. The ester formulation of diclofop, at 0.2 micromolar, completely inhibited root growth in herbicide-susceptible oat (Avena sativa L.) after a 96 hour treatment, but induced only a delayed transient depolarization of the membrane potential in oat root cortical cells. Root growth in susceptible maize (Zea mays L.) seedlings was dramatically reduced by exposure to 0.8 micromolar diclofop-methyl, while the same diclofop-methyl exposure hyperpolarized the membrane potential within 48 hours after treatment. Furthermore, exposure of maize roots to the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) (50 nanomolar), inhibited growth by only 31%, 96 hours after treatment, while the same CCCP exposure depolarized the resting potential by an average of 32 millivolts. Thus, the protonophore hypothesis cannot account for a differential membrane response to phytotoxic levels of diclofop-methyl in two susceptible species. From the results of others, much of the evidence to support the protonophore hypothesis was obtained using high concentrations of diclofop acid (100 micromolar). At a similar concentration, we also report a rapid (3 minute) diclofop-induced depolarization of the membrane potential in roots of susceptible oat and maize, moderately tolerant barley (Hordeum vulgare L.), and resistant pea (Pisum sativum L.) seedlings. Moreover, 100 micromolar diclofop acid inhibited growth in excised cultured pea roots. In contrast, 100 micromolar diclofop-methyl did not inhibit root growth. Since the membrane response to 100 micromolar diclofop acid does not correspond to differential herbicide sensitivity under field conditions, results obtained with very high levels of diclofop acid are probably physiologically irrelevant. The results of this study suggest that the effect of diclofop-methyl on the membrane potentials of susceptible species is probably unrelated to the primary inhibitory effect of the herbicide on plant growth.  相似文献   

9.
Shahid Shaukat  S.  Siddiqui  Imran A.  Khan  Ghazala H.  Zaki  M.J. 《Plant and Soil》2002,245(2):239-247
Argemone mexicana L. (Papaveraceae), a tropical annual weed, is phytotoxic to many crop species. This study was designed to examine the allelochemical and nematicidal potential of A. mexicana and to better understand the role of this weed in the ecosystem. A methanol-soluble extract of the leaf material caused greater juvenile mortality of Meloidogyne javanica than did ethyl acetate or hexane extracts indicating the polar nature of the toxins. Decomposing tissues of A. mexicana in soil at 50 g kg–1 were highly deleterious causing 80% mortality of tomato plants. At 10 g kg–1 plant growth was enhanced, while at 30 g kg–1 plant growth was substantially retarded. M. javanica population densities in the rhizosphere and in roots, and gall formation were significantly suppressed when 10, 30 or 50 g kg–1 A. mexicana was allowed to decompose in the soil. To establish whether decomposition was necessary to produce phytotoxic symptoms, or whether the shoot extract alone could interfere with plant growth, an aqueous shoot extract was applied to soil. Whereas a 50% extract promoted plant growth, a 100% (100 g/500 mL distilled water) concentration significantly reduced plant height, and fresh weights of shoot and root. In general, decomposing plant material caused greater phytotoxicity compared to the aqueous extract. Addition of N as NH4NO3 partially alleviated the phytotoxic action of A. mexicana,and also reduced severity of root-knot disease. Adding Pseudomonas aeruginosa to soil amended with A. mexicana resulted in decreased density of M. javanicain the rhizosphere and in tomato roots, suppressed galling rates and enhanced plant growth.  相似文献   

10.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations.  相似文献   

11.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

12.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

13.
14.
15.
Presence of selected tomato (Solanum lycopersicon) microRNAs (sly-miRNAs) was validated and their expression profiles established in roots, stems, leaves, flowers and fruits of tomato variety Jiangshu14 by quantitative RT-PCR (qRT-PCR). In addition conservation characteristics these sly-miRNAs were analyzed and target genes predicted bioinformatically. Results indicate that some of these miRNAs are specific to tomato while most are conserved in other plant species. Predicted sly-miRNA targets genes were shown to be targeted by either by a single or more miRNAs and are involved in diverse processes in tomato plant growth and development. All the 36 miRNAs were present in the cDNA of mixed tissues and qRT-PCR revealed that some of these sly-miRNAs are ubiquitous in tomato while others have tissue-specific expression. The experimental validation and expression profiling as well target gene prediction of these miRNAs in tomato as done in this study can add to the knowledge on the important roles played by these sly-miRNAs in the growth and development, environmental stress tolerance as well as pest and disease resistance in tomatoes and related species. In addition these findings broaden the knowledge of small RNA-mediated regulation in S. lycopersicon. It is recommended that experimental validation of the target genes be done so as to give a much more comprehensive information package on these miRNAs in tomato and specifically in the selected variety.  相似文献   

16.
The effects of aqueous methanol solutions applied as a foliar spray or via irrigation were investigated in Arabidopsis, tobacco, and tomato plants. Methanol applied to roots leads to phytotoxic damage in all three species tested. Foliar application causes an increase of fresh and dry weight in Arabidopsis and tobacco plants, but not in tomato plants. The increase in fresh and dry weight of Arabidopsis plants does not correlate with increased levels of soluble sugars, suggesting that increased accumulation of other products is responsible for the differences in the methanol-treated leaves. Foliar application of methanol can induce pectin methylesterase (PME) gene expression in Arabidopsis and tomato plants, activating specific PME genes.  相似文献   

17.
The plasmodesmal (PD) network in the cambial zone of Arabidopsis thaliana hypocotyls was analysed using electron microscopy and dye-coupling studies and compared to those of internodes of Populus nigra and Solanum lycopersicum. In all species, PD densities and frequencies undergo alterations in topologically successive cambial walls reflecting species-specific patterns of PD degradation and PD insertion during cell development. Longitudinal PD fission is responsible for an abrupt increment of PD numbers in specific walls of the youngest derivatives at the xylem and/or phloem side. Here, PDs seem to mediate positional signalling to control tissue fate and early cell determination. PD numbers at all cambial interfaces of A. thaliana correspond to those of the herbaceous tomato, but are higher with the woody poplar. This suggests a positive correlation between PD frequencies and the rapidity of cell division activity. Photoactivated green fluorescent protein (26 kDa) did not diffuse through cambial PDs of A. thaliana. This is in keeping with the common size exclusion limit (SEL) of 8–10 kDa observed for PDs at the youngest interfaces of tomato and poplar which may mediate diffusive exchange of developmental signals of equal molecular size. The regular growth patterns in internodal cambial zones of poplar and tomato result from synchronized cell division activity of neighbouring initials. A. thaliana hypocotyls have an irregular mode of secondary growth. Here, signalling through PDs in misaligned radial walls between non-homologous derivatives may control tissue development. The observed organizational differences between the cambia cast doubts on the suitability of A. thaliana as a model plant for cambial research.  相似文献   

18.
Chemical interference is increasingly suggested as a mechanism facilitating exotic plant invasion and plant community composition. In order to explore this further, we employed a comprehensive extract-bioassay technique that facilitated detection and demarcation of phytotoxicity, direct allelopathy and indirect allelopathy of bitou bush (Chrysanthemoides monilifera spp. rotundata) compared to an indigenous dominant of the invaded system, acacia (Acacia longifolia var. sophorae). Extracts of the leaves and roots of both species exhibited phytotoxic effects against five indigenous plant species. Evidence for allelopathy between co-evolved indigenous plants was detected between acacia and Isolepis nodosa. Allelopathy between bitou bush and four indigenous plant species was also detected. Therefore we propose that both the acacia and bitou bush have the potential to chemically inhibit the establishment of indigenous plants. Eventual dominance of bitou bush is predicted, however, based on more ubiquitous effects on seedling growth.  相似文献   

19.
A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号