首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The African vlei rat, Otomys irroratus, comprises several distinct chromosomal races that may be grouped into two major cytogenetic clades. Recognition of these clades is underpinned by a complex chromosomal rearrangement involving three different autosomes in the unfused state. We have used unidirectional fluorescence in situ hybridization (FISH) of mouse chromosome-specific painting probes to molecularly define the components of this rearrangement as well as to establish the chromosomal homologies between the mouse and the vlei rat genomes. This has allowed for the detection of 41 autosomal segments of conserved synteny. Nine mouse chromosomes were conserved in toto (MMU3, 4, 6, 7, 11, 12, 14, 18, 19) with a further seven (MMU2, 5, 8, 9, 10, 13, 16) showing homology to two discrete regions in the vlei rat genome. Two mouse autosomes (MMU15, 17) correspond to three regions in O. irroratus with MMU1 being the most fragmented showing five sites of hybridization in this species. By mapping these data to published sequence-based phylogenies we are able to confirm most of the published putative ancestral murine chromosomal states. Our data further indicate that MMU15a+ MMU13b+MMU10b+MMU17b was present in the murine ancestral karyotype suggesting an ancestral 2n = 52 rather than the 2n = 54 previously postulated.  相似文献   

2.
We report on the construction of a comparative chromosome map between the emblematic laboratory rat, Rattus norvegicus (RNO), and Delacour's Marmoset rat, Hapalomys delacouri (HDE), based on cross-species fluorescence in situ hybridization with R. norvegicus painting probes. Sixteen R. norvegicus chromosomes (RNO 3-6, 8, 10-15, 17-20, and X) were retained in their entirety (as a conserved block or as a single chromosome) in the H. delacouri genome. The remaining 5 R. norvegicus chromosomes (RNO 1, 2, 7, 9, and 16) produced 2 signals in the H. delacouri karyotype. Our analysis allowed the detection of an X-autosome translocation between RNO X and 11 that occurred convergently in an unrelated species, Bandicota savilei, and a single B chromosome that accounts for the 2n = 48 karyotype observed in this specimen. In total, the rat chromosome paints revealed 27 segments of conserved synteny in H. delacouri. The analysis showed 7 NOR bearing pairs in H. delacouri (HDE 1, 3, 6, 7, 8, 10, and 13) and the occurrence of an interstitial telomeric signal at the centromeric regions of 8 H. delacouri chromosomes (HDE 3, 10, 11, 12, 13, 16, 19, and 22). These data, together with published comparative maps, enabled a revision of the previously postulated murine ancestral condition suggesting that it probably comprised a wholly acrocentric karyotype with 2n = 46-50.  相似文献   

3.
Multidirectional chromosome painting with probes derived from flow-sorted chromosomes of humans (Homo sapiens, HSA, 2n = 46) and galagos (Galago moholi, GMO, 2n = 38) allowed us to map evolutionarily conserved chromosomal segments among humans, galagos, and slow lorises (Nycticebus coucang, NCO, 2n = 50). In total, the 22 human autosomal painting probes detected 40 homologous chromosomal segments in the slow loris genome. The genome of the slow loris contains 16 sytenic associations of human homologues. The ancient syntenic associations of human chromosomes such as HSA 3/21, 7/16, 12/22 (twice), and 14/15, reported in most mammalian species, were also present in the slow loris genome. Six associations (HSA 1a/19a, 2a/12a, 6a/14b, 7a/12c, 9/15b, and 10a/19b) were shared by the slow loris and galago. Five associations (HSA 1b/6b, 4a/5a, 11b/15a, 12b/19b, and 15b/16b) were unique to the slow loris. In contrast, 30 homologous chromosome segments were identified in the slow loris genome when using galago chromosome painting probes. The data showed that the karyotypic differences between these two species were mainly due to Robertsonian translocations. Reverse painting, using galago painting probes onto human chromosomes, confirmed most of the chromosome homologies between humans and galagos established previously, and documented the HSA 7/16 association in galagos, which was not reported previously. The presence of the HSA 7/16 association in the slow loris and galago suggests that the 7/16 association is an ancestral synteny for primates. Based on our results and the published homology maps between humans and other primate species, we propose an ancestral karyotype (2n = 60) for lorisiform primates.  相似文献   

4.
We used multidirectional chromosome painting with probes derived by bivariate fluorescence-activated flow sorting of chromosomes from human, black lemur (Eulemur macaco macaco) and tree shrew (Tupaia belangeri, order Scandentia) to better define the karyological relationship of tree shrews and primates. An assumed close relationship between tree shrews and primates also assists in the reconstruction of the ancestral primate karyotype taking the tree shrew as an ”outgroup” species. The results indicate that T. belangeri has a highly derived karyotype. Tandem fusions or fissions of chromosomal segments seem to be the predominant mechanism in the evolution of this tree shrew karyotype. The 22 human autosomal painting probes delineated 40 different segments, which is in the range found in most mammals analyzed by chromosome painting up to now. There were no reciprocal translocations that would distinguish the karyotype of the tree shrew from an assumed primitive primate karyotype. This karyotype would have included the chromosomal forms 1a, 1b, 2a, 2b, 3/21, 4–11, 12a/22a, 12b/22b, 13, 14/15, 16a, 16b, 17, 18, 19a, 19b, 20 and X and Y and had a diploid chromosome number of 2n=50. Of these forms, chromosomes 1a, 1b, 4, 8, 12a/22a, and 12b/22bmay be common derived characters that would link the tree shrew with primates. To define the exact phylogenetic relationships of the tree shrews and the genomic rearrangements that gave rise to the primates and eventually to humans further chromosome painting in Rodentia, Lagomorpha, Dermoptera and Chiroptera is needed, but many of the landmarks of genomic evolution are now known. Received: 11 February 1999; in revised form: 17 June 1999 / Accepted: 20 July 1999  相似文献   

5.
Sea urchin Hox genes: insights into the ancestral Hox cluster   总被引:3,自引:0,他引:3  
We describe the Hox cluster in the radially symmetric sea urchin and compare our findings to what is known from clusters in bilaterally symmetric animals. Several Hox genes from the direct-developing sea urchin Heliocidaris erythrogramma are described. CHEF gel analysis shows that the Hox genes are clustered on a < or = 300 kilobase (kb) fragment of DNA, and only a single cluster is present, as in lower chordates and other nonvertebrate metazoans. Phylogenetic analyses of sea urchin, amphioxus, Drosophila, and selected vertebrate Hox genes confirm that the H. erythrogramma genes, and others previously cloned from other sea urchins, belong to anterior, central, and posterior groups. Despite their radial body plan and lack of cephalization, echinoderms retain at least one of the anterior group Hox genes, an orthologue of Hox3. The structure of the echinoderm Hox cluster suggests that the ancestral deuterostome had a Hox cluster more similar to the current chordate cluster than was expected Sea urchins have at least three Abd-B type genes, suggesting that Abd-B expansion began before the radiation of deuterostomes.   相似文献   

6.
The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.  相似文献   

7.
Chromosome painting, that is visualisation of chromosome segments or whole chromosomes based on fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes is widely used for chromosome studies in mammals, birds, reptiles and insects. Attempts to establish chromosome painting in euploid plants have failed so far. Here, we report on chromosome painting in Arabidopsis thaliana (n = 5, 125 Mb C(-1)). Pools of contiguous 113-139 BAC clones spanning 2.6 and 13.3 Mb of the short and the long arm of chromosome 4 (17.5 Mb) were used to paint this entire chromosome during mitotic and meiotic divisions as well as in interphase nuclei. The possibility of identifying any particular chromosome region on pachytene chromosomes and within interphase nuclei using selected BACs is demonstrated by differential labelling. This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.  相似文献   

8.
Molecular studies have led recently to the proposal of a new super-ordinal arrangement of the 18 extant Eutherian orders. From the four proposed super-orders, Afrotheria and Xenarthra were considered the most basal. Chromosome-painting studies with human probes in these two mammalian groups are thus key in the quest to establish the ancestral Eutherian karyotype. Although a reasonable amount of chromosome-painting data with human probes have already been obtained for Afrotheria, no Xenarthra species has been thoroughly analyzed with this approach. We hybridized human chromosome probes to metaphases of species (Dasypus novemcinctus, Tamandua tetradactyla, and Choloepus hoffmanii) representing three of the four Xenarthra families. Our data allowed us to review the current hypotheses for the ancestral Eutherian karyotype, which range from 2n = 44 to 2n = 48. One of the species studied, the two-toed sloth C. hoffmanii (2n = 50), showed a chromosome complement strikingly similar to the proposed 2n = 48 ancestral Eutherian karyotype, strongly reinforcing it.  相似文献   

9.
Marsupial mammals show extraordinary karyotype stability, with 2n = 14 considered ancestral. However, macropodid marsupials (kangaroos and wallabies) exhibit a considerable variety of karyotypes, with a hypothesised ancestral karyotype of 2n = 22. Speciation and karyotypic diversity in rock wallabies (Petrogale) is exceptional. We used cross species chromosome painting to examine the chromosome evolution between the tammar wallaby (2n = 16) and three 2n = 22 rock wallaby species groups with the putative ancestral karyotype. Hybridization of chromosome paints prepared from flow sorted chromosomes of the tammar wallaby to Petrogale spp., showed that this ancestral karyotype is largely conserved among 2n = 22 rock wallaby species, and confirmed the identity of ancestral chromosomes which fused to produce the bi-armed chromosomes of the 2n = 16 tammar wallaby. These results illustrate the fission-fusion process of karyotype evolution characteristic of the kangaroo group.  相似文献   

10.
11.
《Molecular cell》2021,81(16):3400-3409.e3
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

12.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.  相似文献   

13.
Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism associated with a defective catabolism of phenylalanine and tyrosine leading to increased systemic levels of homogentisic acid (HGA). Excess HGA is partly excreted in the urine, partly accumulated within the body and deposited onto connective tissues under the form of an ochronotic pigment, leading to a range of clinical manifestations. No clear genotype/phenotype correlation was found in AKU, and today there is the urgent need to identify biomarkers able to monitor AKU progression and evaluate response to treatment. With this aim, we provided the first proteomic study on serum and plasma samples from alkaptonuric individuals showing pathological SAA, CRP and Advanced Oxidation Protein Products (AOPP) levels. Interesting similarities with proteomic studies on other rheumatic diseases were highlighted together with proteome alterations supporting the existence of oxidative stress and inflammation in AKU. Potential candidate biomarkers to assess disease severity, monitor disease progression and evaluate response to treatment were identified as well.  相似文献   

14.
Karyotype dynamics driven by complex chromosome rearrangements constitute a fundamental issue in evolutionary genetics. The evolutionary events underlying karyotype diversity within plant genera, however, have rarely been reconstructed from a computed ancestral progenitor. Here, we developed a method to rapidly and accurately represent extant karyotypes with the genus, Cucumis, using highly customizable comparative oligo-painting (COP) allowing visualization of fine-scale genome structures of eight Cucumis species from both African-origin and Asian-origin clades. Based on COP data, an evolutionary framework containing a genus-level ancestral karyotype was reconstructed, allowing elucidation of the evolutionary events that account for the origin of these diverse genomes within Cucumis. Our results characterize the cryptic rearrangement hotspots on ancestral chromosomes, and demonstrate that the ancestral Cucumis karyotype (n = 12) evolved to extant Cucumis genomes by hybridizations and frequent lineage- and species-specific genome reshuffling. Relative to the African species, the Asian species, including melon (Cucumis melo, n = 12), Cucumis hystrix (n = 12) and cucumber (Cucumis sativus, n = 7), had highly shuffled genomes caused by large-scale inversions, centromere repositioning and chromothripsis-like rearrangement. The deduced reconstructed ancestral karyotype for the genus allowed us to propose evolutionary trajectories and specific events underlying the origin of these Cucumis species. Our findings highlight that the partitioned evolutionary plasticity of Cucumis karyotype is primarily located in the centromere-proximal regions marked by rearrangement hotspots, which can potentially serve as a reservoir for chromosome evolution due to their fragility.  相似文献   

15.
A comparative proteomic analysis was performed to explore the mechanism of cell elongation in developing cotton fibers. The temporal changes of global proteomes at five representative development stages (5-25 days post-anthesis [dpa]) were examined using 2-D electrophoresis. Among approximately 1800 stained protein spots reproducibly detected on each gel, 235 spots were differentially expressed with significant dynamics in elongating fibers. Of these, 120 spots showed a more than 2-fold change in at least one stage point, and 21 spots appeared to be specific to developmental stages. Furthermore, 106 differentially expressed proteins were identified from mass spectrometry to match 66 unique protein species. These proteins involve different cellular and metabolic processes with obvious functional tendencies toward energy/carbohydrate metabolism, protein turnover, cytoskeleton dynamics, cellular responses and redox homeostasis, indicating a good correlation between development-dependent proteins and fiber biochemical processes, as well as morphogenesis. Newly identified proteins such as phospholipase D alpha, vf14-3-3 protein, small ras-related protein, and GDP dissociation inhibitor will advance our knowledge of the complicated regulatory network. Identification of these proteins, combined with their changes in abundance, provides a global view of the development-dependent protein changes in cotton fibers, and offers a framework for further functional research of target proteins associated with fiber development.  相似文献   

16.
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.  相似文献   

17.
Apolygus lucorum (Miridae) is an omnivorous pest that occurs worldwide and is notorious for the serious damage it causes to various crops and substantial economic losses. Although some studies have examined the biological characteristics of the mirid bug, no reference genome is available in Miridae, limiting in‐depth studies of this pest. Here, we present a chromosome‐scale reference genome of A. lucorum, the first sequenced Miridae species. The assembled genome size was 1.02 Gb with a contig N50 of 785 kb. With Hi‐C scaffolding, 1,016 Mb contig sequences were clustered, ordered and assembled into 17 large scaffolds with scaffold N50 length 68 Mb, each corresponding to a natural chromosome. Numerous transposable elements occur in this genome and contribute to the large genome size. Expansions of genes associated with omnivorousness and mesophyll feeding such as those related to digestion, chemosensory perception, and detoxification were observed in A. lucorum, suggesting that gene expansion contributed to its strong environmental adaptability and severe harm to crops. We clarified that a salivary enzyme polygalacturonase is unique in mirid bugs and has significantly expanded in A. lucorum, which may contribute to leaf damage from this pest. The reference genome of A. lucorum not only facilitates biological studies of Hemiptera as well as an understanding of the damage mechanism of mesophyll feeding, but also provides a basis on which to develop efficient control technologies for mirid bugs.  相似文献   

18.
19.
20.

Background

Whole genome amplification is an increasingly common technique through which minute amounts of DNA can be multiplied to generate quantities suitable for genetic testing and analysis. Questions of amplification-induced error and template bias generated by these methods have previously been addressed through either small scale (SNPs) or large scale (CGH array, FISH) methodologies. Here we utilized whole genome sequencing to assess amplification-induced bias in both coding and non-coding regions of two bacterial genomes. Halobacterium species NRC-1 DNA and Campylobacter jejuni were amplified by several common, commercially available protocols: multiple displacement amplification, primer extension pre-amplification and degenerate oligonucleotide primed PCR. The amplification-induced bias of each method was assessed by sequencing both genomes in their entirety using the 454 Sequencing System technology and comparing the results with those obtained from unamplified controls.

Results

All amplification methodologies induced statistically significant bias relative to the unamplified control. For the Halobacterium species NRC-1 genome, assessed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 119 times greater than those from unamplified material, 164.0 times greater for Repli-G, 165.0 times greater for PEP-PCR and 252.0 times greater than the unamplified controls for DOP-PCR. For Campylobacter jejuni, also analyzed at 100 base resolution, the D-statistics from GenomiPhi-amplified material were 15 times greater than those from unamplified material, 19.8 times greater for Repli-G, 61.8 times greater for PEP-PCR and 220.5 times greater than the unamplified controls for DOP-PCR.

Conclusion

Of the amplification methodologies examined in this paper, the multiple displacement amplification products generated the least bias, and produced significantly higher yields of amplified DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号