首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomere length measurements using digital fluorescence microscopy.   总被引:11,自引:0,他引:11  
BACKGROUND: The ends of chromosomes (telomeres) are important to maintain chromosome stability, and the loss of telomere repeat sequences has been implicated in cellular senescence and genomic instability of cancer cells. The traditional method for measuring the length of telomeres (Southern analysis) requires a large number of cells (>10(5)) and does not provide information on the telomere length of individual chromosomes. Here, we describe a digital image microscopy system for measurements of the fluorescence intensity derived from telomere repeat sequences in metaphase cells following quantitative fluorescence in situ hybridization (Q-FISH). METHODS: Samples are prepared for microscopy using Q-FISH with Cy3 labeled peptide nucleic acid probes specific for (T(2)AG(3))(n) sequences and the DNA dye DAPI. Separate images of Cy3 and DAPI fluorescence are acquired and processed with a dedicated computer program (TFL-TELO). With the program, the integrated fluorescence intensity value for each telomere, which is proportional to the number of hybridized probes, is calculated and presented to the user. RESULTS: Indirect tests of our method were performed using simulated as well as defined tests objects. The precision and consistency of human telomere length measurements was then analyzed in a number of experiments. It was found that by averaging the results of less than 30 cells, a good indication of the telomere length (SD of 10-15%) can be obtained. CONCLUSIONS: We demonstrate that accurate and repeatable fluorescence intensity measurements can be made from Q-FISH images that provide information on the length of telomere repeats at individual chromosomes from limited number of cells.  相似文献   

2.
We report here the results of a telomere length analysis in four male Chinese hamsters by quantitative fluorescence in situ hybridization (Q-FISH). We were able to measure telomere length of 64 (73%) of 88 Chinese hamster telomeres. We could not measure telomere length in chromosome 10 or in the short arms of chromosomes 5, 6, 7 and 8 because of the overlaps between the interstitial and terminal telomeric signals. Our analysis in the 73% of Chinese hamster telomeres indicate that their average length is approximately 38 kb. Therefore, Chinese hamster telomeres are comparable in length to mouse telomeres, but are much longer than human telomeres. Similar to previous Q-FISH studies on human and mouse chromosomes, our results indicate that individual Chinese hamster chromosomes may have specific telomere lengths, suggesting that chromosome-specific factors may be involved in telomere length regulation.  相似文献   

3.
Law H  Lau Y 《Cytometry》2001,43(2):150-153
BACKGROUND: Telomeres are highly conserved repeats at the ends of chromosomes that maintain chromosome stability and reflect the replicative potential of cells. Telomere length can be determined by Southern blot hybridization or quantitative fluorescence in situ hybridization (Q-FISH). Recently, two flow cytometry-based (Flow) FISH protocols have been published. METHODS: We compared the telomere length measured by Southern blotting and Flow FISH using standard beads to calibrate and quantify the fluorescence intensity. RESULTS: The telomeric fluorescence of cord blood and peripheral blood mononuclear cells was similar to that reported by other studies. There was a linear relationship between the telomeric fluorescence determined by Flow FISH and the telomere fragment size determined by Southern blotting (r = 0.89; P < 0.001). CONCLUSION: It is important to set up a center-specific curve and select appropriate cell lines for reference. This Q-Flow FISH protocol will facilitate the measurement of telomere length and allow more meaningful comparison of data (in standard fluorescence units or fragment size) between institutes.  相似文献   

4.
BACKGROUND: The length of the terminal sequences of linear chromosomes changes dynamically during cellular proliferation. A crucial element in the study of telomere-related regulation mechanisms is the ability to measure telomere lengths of individual chromosomes. Individual telomere lengths can be measured using digital imaging fluorescence microscopy-based techniques. We extended this method using confocal microscopy for the acquisition of three-dimensional (3D) images. Consequently, variations in measured signal intensities due to erroneous focusing are avoided. METHODS: We employed our 3D telomere sizing method to compare telomere lengths of sister chromatids within metaphase preparations from human lymphocytes. The samples were treated following a quantitative fluorescence in situ hybridization (Q-FISH) protocol using fluorescein isothiocyanate (FITC)-labeled telomeric peptidic nucleic acid (PNA) probes and propidium iodide (PI) counterstain. RESULTS: We demonstrated that the telomere lengths of two sister chromatids are not necessarily equal in human lymphocytes. Profound statistical analysis demonstrated significant differences in the distribution of the sister chromatid telomere lengths, but we were not able to prove a discrete distribution of telomere sister ratios. These telomere length differences were more apparent in older individuals. CONCLUSION: Whereas the majority of sister telomere pairs have equal lengths, surprisingly, a minority was significantly different in each individual studied. We are convinced that these observations are not linked to the methodology or the protocol applied. We suggest that a biological phenomenon might be involved.  相似文献   

5.
BACKGROUND: Telomeres containing noncoding DNA repeats at the end of the chromosomes are essential for chromosomal stability and are implicated in regulating the replication and senescence of cells. The gradual loss of telomere repeats in cells has been linked to aging and tumor development and methods to measure telomere length are of increasing interest. At least three methods for measuring the length of telomere repeats have been described: Southern blot analysis and quantitative fluorescence in situ hybridization using either digital fluorescence microscopy (Q-FISH) or flow cytometry (flow-FISH). Both Southern blot analysis and Q-FISH have specific limitations and are time-consuming, whereas the flow-FISH technique requires relatively few cells (10(5)) and can be completed in a single day. A further advantage of the flow-FISH method is that data on the telomere length from individual cells and subsets of cells (lymphocytes and granulocytes) can be acquired from the same sample. In order to obtain accurate and reproducible results using the flow-FISH technique, we systematically explored the influence of various steps in the protocol on telomere length values and established an acceptable range for the most critical parameters. METHODS: Isolated leukocytes from whole blood are denatured by heat and 70%/75% formamide, then hybridized with or without a telomere-specific fluorescein isothiocyante (FITC)-conjugated peptide nucleic acid probe (PNA). Unbound telomere PNA is washed away, the DNA is counterstained, and telomere fluorescence is measured on a flow cytometer using an argon ion laser (488 nm) to excite FITC. For each sample, duplicates of telomere PNA-stained and unstained tubes are analyzed. RESULTS: Cell counts and flow-FISH telomere length measurements were performed on leukocytes and thymocytes of humans and other species. Leukocyte suspensions were prepared by two red blood cell lysis steps with ammonium chloride. Optimal denaturation of DNA was achieved by heating at 85-87 degrees C for 15 min in a solution containing 70%/75% formamide. Hybridization was performed at room temperature with a 0.3 microg/ml telomere-PNA probe for at least 60-90 min. Unbound telomere-PNA probe was diluted at least 4,000-40,000 times with wash steps containing 70%/75% formamide at room temperature. LDS 751 and DAPI were suitable as DNA counterstains as they did not show significant interference with telomere length measurement. CONCLUSIONS: The use of flow-FISH for telomere length measurements in nucleated blood cells requires tight adherence to an optimized protocol. The method described here can be used to determine rapidly the telomere length in subsets of nucleated blood cells.  相似文献   

6.
Telomeres are specialized structures at chromosome ends that are thought to function as buffers against chromosome fusion. Several studies suggest that telomere shortening may render chromosomes fusigenic. We used a novel quantitative fluorescence in situ hybridization procedure to estimate telomere length in individual mammalian chromosomes, and G-banding and chromosome painting techniques to determine chromosome fusigenic potential. All analysed Chinese hamster and mouse cell lines exhibited shorter telomeres at short chromosome arms than at long chromosome arms. However, no clear link between short telomeres and chromosome fusigenic potential was observed, i.e. frequencies of telomeric associations were higher in cell lines exhibiting longer telomeres. We speculate that chromosome fusigenic potential in mammalian cell lines may be determined not only by telomere length but also by the status of telomere chromatin structure. This is supported by the observed presence of chromatin filaments linking telomeres in Chinese hamster chromosomes and of multibranched chromosomes oriented end-to-end in the murine severe combined immunodeficient (SCID) cell line. Multibranched chromosomes are the hallmark of the human ICF (Immune deficiency, Centromeric instability, Facial abnormalities) syndrome, characterized by alterations in heterochromatin structure. Received: 13 June 1997; in revised form: 3 August 1997 / Accepted: 4 August 1997  相似文献   

7.
The DNA of human chromosomes terminates in several kilobases of telomere repeats that are gradually lost with; age and with replication in vitro. Defective telomere maintenance has been shown to be causally linked to cell cycle exit and apoptosis. In order to overcome the limitations imposed by Southern blotting, we have established a quantitative fluorescence in situ hybridization (Q-FISH) technique. This technique allows estimation of telomere length in specific chromosome arms from metaphase cell preparations. Furthermore, we have extended quantitative in situ hybridization to flow cytometry (flow FISH) in order to obtain information on the mean telomere repeat content in suspended cells. Telomere length in granulocytes, monocytes, CD8 and CD4 T lymphocytes and natural killer cells was found to differ slightly in the peripheral blood of adults. However, strikingly longer telomeres were observed in B lymphocytes (approximately 1.3 kb longer), suggesting a functional role for telomere maintenance in this cell subset. In summary, Q-FISH and flow FISH represent new methods for measuring telomere length in single cells and allow studies of telomere dynamics in haematopoietic subpopulations at various stages of normal and abnormal antigen responses.  相似文献   

8.
Studies of telomeres and telomere biology often critically rely on the detection of telomeric DNA and measurements of the length of telomere repeats in either single cells or populations of cells. Several methods are available that provide this type of information and it is often not clear what method is most appropriate to address a specific research question. The major variables that need to be considered are the material that is or can be made available and the accuracy of measurements that is required. The goal of this review is to provide a comprehensive summary of the most commonly used methods and discuss the advantages and disadvantages of each. Methods that start with genomic DNA include telomere restriction fragment (TRF) length analysis, PCR amplification of telomere repeats relative to a single copy gene by Q-PCR or MMQPCR and single telomere length analysis (STELA), a PCR-based approach that accurately measures the full spectrum of telomere lengths from individual chromosomes. A different set of methods relies on fluorescent in situ hybridization (FISH) to detect telomere repeats in individual cells or chromosomes. By including essential calibration steps and appropriate controls these methods can be used to measure telomere repeat length or content in chromosomes and cells. Such methods include quantitative FISH (Q-FISH) and flow FISH which are based on digital microscopy and flow cytometry, respectively. Here the basic principles of various telomere length measurement methods are described and their strengths and weaknesses are highlighted. Some recent developments in telomere length analysis are also discussed. The information in this review should facilitate the selection of the most suitable method to address specific research question about telomeres in either model organisms or human subjects.  相似文献   

9.
Ji  Guangzhen  Liu  Kai  Okuka  Maja  Liu  Na  Liu  Lin 《BMC cell biology》2012,13(1):1-11
Telomeres are essential for the maintenance of genomic stability, and telomere dysfunction leads to cellular senescence, carcinogenesis, aging, and age-related diseases in humans. Pigs have become increasingly important large animal models for preclinical tests and study of human diseases, and also may provide xeno-transplantation sources. Thus far, Southern blot analysis has been used to estimate average telomere lengths in pigs. Telomere quantitative fluorescence in situ hybridization (Q-FISH), however, can reveal status of individual telomeres in fewer cells, in addition to quantifying relative telomere lengths, and has been commonly used for study of telomere function of mouse and human cells. We attempted to investigate telomere characteristics of porcine cells using telomere Q-FISH method. The average telomere lengths in porcine cells measured by Q-FISH correlated with those of quantitative real-time PCR method (qPCR) or telomere restriction fragments (TRFs) by Southern blot analysis. Unexpectedly, we found that porcine cells exhibited high incidence of telomere doublets revealed by Q-FISH method, coincided with increased frequency of cellular senescence. Also, telomeres shortened during subculture of various porcine primary cell types. Interestingly, the high frequency of porcine telomere doublets and telomere loss was associated with telomere dysfunction-induced foci (TIFs). The incidence of TIFs, telomere doublets and telomere loss increased with telomere shortening and cellular senescence during subculture. Q-FISH method using telomere PNA probe is particularly useful for characterization of porcine telomeres. Porcine cells exhibit high frequency of telomere instability and are susceptible to telomere damage and replicative senescence.  相似文献   

10.
目的:应用定量荧光原位杂交(Q-FISH)方法测定端粒长度。方法:选取4种端粒长度均一的标准细胞株采用Q-FISH的方法做出荧光亮度与端粒长度的标准曲线,从而得出实验细胞株的端粒长度,与DNA印迹法测定末端限制性片段(TRF)长度进行二者之间的相关性分析。结果:检测荧光强度的最佳线性曝光时间为400ms,相对于DNA印迹法,定量荧光原位杂交(Q-FISH)法所需标本量少,实验周期短,端粒长度结果与Southern杂交法具有很好的相关性。结论:采用定量荧光原位杂交方法测端粒长度具有重复性好、精确可靠的特点,适用于对珍贵标本的端粒改变进行分析。  相似文献   

11.
Using quantitative fluorescence in situ hybridization (Q-FISH), the average telomere length of hepatoma cells was assessed by the average telomeric signal intensity of cancer cells relative to that of stromal cells. We demonstrated first the applicability of Q-FISH for tissue sections by comparing Q-FISH and Southern blotting results. Tumors less than 50mm in diameter and with a relative telomeric intensity of less than 0.6 were categorized as group A and the remainder as group B. In group A, the telomere length correlated negatively with tumor size, whereas in group B there was no correlation. Compared with the group A tumors, the group B tumors were of significantly more advanced stage, showed higher telomerase and proliferative activities, and exhibited less differentiated histology. Therefore, we considered that a lack of correlation between telomere length and tumor size, namely, size-independence of telomere length, is associated with unfavorable clinicopathological features of hepatocellular carcinomas.  相似文献   

12.

Background  

Previous studies have demonstrated that telomeres in somatic cells are not randomly distributed at the end of the chromosomes. We hypothesize that these chromosome arm specific differences in telomere length (the telomere length pattern) may be actively maintained. In this study we investigate the existence and maintenance of the telomere length pattern in stem cells. For this aim we studied telomere length in primary human mesenchymal stem cells (hMSC) and their telomerase-immortalised counterpart (hMSC-telo1) during extended proliferation as well as after irradiation. Telomere lengths were measured using Fluorescence In Situ Hybridization (Q-FISH).  相似文献   

13.
We have reported that telomere fluorescence units (TFUs) of established induced pluripotent stem cells (iPSCs) derived from human amnion (hAM933) and fetal lung fibroblasts (MRC-5) were significantly longer than those of the parental cells, and that the telomere extension rates varied quite significantly among clones without chromosomal instability, although the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased along with chromosomal abnormalities from an early stage. In the present study we attempted to clarify telomere dynamics in each individual chromosomal arm of parental cells and their derived clonal human iPSCs at different numbers of passages using quantitative fluorescence in situ hybridization (Q-FISH). Although no speci?c arm of any particular chromosome appeared to be consistently shorter or longer than most of the other chromosomes in any of the cell strains, telomere elongation in each chromosome of an iPSC appeared to be random and stochastic. However, in terms of the whole genome of any specific cell, the telomeres showed overall elongation associated with iPSC generation. We have thus demonstrated the specific telomere dynamics of each individual chromosomal arm in iPSCs derived from parental cells, and in the parental cells themselves, using Q-FISH.  相似文献   

14.
Telomere directed fragmentation of mammalian chromosomes.   总被引:27,自引:3,他引:24       下载免费PDF全文
Cloned human telomeric DNA can integrate into mammalian chromosomes and seed the formation of new telomeres. This process occurs efficiently in three established human cell lines and in a mouse embryonic stem cell line. The newly seeded telomeres appear to be healed by telomerase. The seeding of new telomeres by cloned telomeric DNA is either undetectable or very inefficient in non-tumourigenic mouse or human somatic cell lines. The cytogenetic consequences of the seeding of new telomeres include large chromosome truncations but most of the telomere seeding events occur close to the pre-existing ends of natural chromosomes.  相似文献   

15.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   

16.
Elongated telomeres in scid mice   总被引:9,自引:0,他引:9  
Severe combined immunodeficiency (scid) mice are deficient in the enzyme DNA-PK (DNA-dependent protein kinase) as a result of the mutation in the gene encoding the catalytic subunit (DNA-PKcs) of this enzyme. DNA-PKcs is a member of the phosphatidylinositol 3-kinase superfamily, which includes the human protein ATM (ataxia telangiectasia mutated) and the yeast protein Tel1. Using Q-FISH (quantitative fluorescence in situ hybridization), we show here that scid mice from four different genetic backgrounds have, on average, 1.5-2 times longer telomeres than those of corresponding wild-type mice. Our results point to the possibility that DNA-PKcs may, directly or indirectly, be involved in telomere length regulation in mammalian cells.  相似文献   

17.
Determination of telomere length is traditionally performed by Southern blotting and densitometry, giving a mean telomere restriction fragment (TRF) value for the total cell population studied. Fluorescence in situ hybridization (FISH) of telomere repeats has been used to calculate telomere length, a method called quantitative (Q)-FISH. We here present a quantitative flow cytometric approach, Q-FISHFCM, for evaluation of telomere length distribution in individual cells based on in situ hybridization using a fluorescein-labeled peptide nucleic acid (PNA) (CCCTAA)3probe and DNA staining with propidium iodide. A simple and rapid protocol with results within 30 h was developed giving high reproducibility. One important feature of the protocol was the use of an internal cell line control, giving an automatic compensation for potential differences in the hybridization steps. This protocol was tested successfully on cell lines and clinical samples from bone marrow, blood, lymph nodes and tonsils. A significant correlation was found between Southern blotting and Q-FISHFCMtelomere length values ( P = 0.002). The mean sub-telomeric DNA length of the tested cell lines and clinical samples was estimated to be 3.2 kbp. With the Q-FISHFCMmethod the fluorescence signal could be determined in different cell cycle phases, indicating that in human cells the vast majority of telomeric DNA is replicated early in S phase.  相似文献   

18.
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells   总被引:2,自引:0,他引:2  
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length.  相似文献   

19.
Telomere position effect (TPE) is the influence of telomeres on subtelomeric epigenetic marks and gene expression. Previous studies suggested that TPE depends on genetic background. As these analyses were performed on different chromosomes, cell types and species, it remains unclear whether TPE represents a chromosome—rather than genetic background-specific regulation. We describe the development of a Linear Human Artificial Chromosome (L-HAC) as a new tool for telomere studies. The L-HAC was generated through the Cre-loxP-mediated addition of telomere ends to an existing circular HAC (C-HAC). As it can be transferred to genetically distinct cell lines and animal models the L-HAC enables the study of TPE in an unprecedented manner. The HAC was relocated to four telomerase-positive cell lines via microcell-mediated chromosome transfer and subsequently to mice via blastocyst injection of L-HAC+-ES-cells. We could show consistent genetic background-dependent adaptation of telomere length and telomere-associated de novo subtelomeric DNA methylation in mouse ES-R1 cells as well as in mice. Expression of the subtelomeric neomycin gene was inversely correlated with telomere length and subtelomeric methylation. We thus provide a new tool for functional telomere studies and provide strong evidence that telomere length, subtelomeric chromatin marks and expression of subtelomeric genes are genetic background dependent.  相似文献   

20.
Telomere maintenance is thought to be essential for immortalization of human cancer cells to compensate for the loss of DNA from the ends of chromosomes and to prevent chromosome fusion. We have investigated telomere dynamics in the telomerase-positive squamous cell carcinoma cell line SCC-61 by marking the ends of chromosomes with integrated plasmid sequences so that changes in the length of individual telomeres could be monitored. Despite having very short telomeres, SCC-61 has a relatively stable genome and few telomere associations. The marked telomeres in different SCC-61 clones have similar mean lengths which show little change with increasing time in culture. Thus, each marked telomere is maintained at a specific length, which we term the equilibrium mean length (EML). The Gaussian distribution in the length of the marked telomeres demonstrates that telomeres continuously fluctuate in length. Consistent with this observation, the mean lengths of the marked telomere in subclones of these cell lines initially differ, but then gradually return to the EML of the original clone with increasing time in culture. The analysis of a clone with two marked telomeres demonstrated that changes in telomere length can occur on each marked telomere independently or coordinately on both telomeres. These results suggest that the short telomeres in many tumor cell lines do not result from an inability to properly maintain telomeres at a specific length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号