首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
De Lorenzo, A., A. Andreoli, J. Matthie, and P. Withers.Predicting body cell mass with bioimpedance by using theoretical methods: a technological review. J. Appl.Physiol. 82(5): 1542-1558, 1997.The body cellmass (BCM), defined as intracellular water (ICW), was estimated in 73 healthy men and women by total body potassium (TBK) and by bioimpedancespectroscopy (BIS). In 14 other subjects, extracellular water (ECW) andtotal body water (TBW) were measured by bromide dilution and deuteriumoxide dilution, respectively. For all subjects, impedance spectral datawere fit to the Cole model, and ECW and ICW volumes were predicted byusing model electrical resistance terms RE andRI in an equation derived from Hanai mixture theory,respectively. The BIS ECW prediction bromide dilution wasr = 0.91, standard error of theestimate (SEE) 0.90 liter. The BIS TBW prediction of deuterium spacewas r = 0.95, SEE 1.33 liters. The BISICW prediction of the dilution-determined ICW wasr = 0.87, SEE 1.69 liters. The BIS ICWprediction of the TBK-determined ICW for the 73 subjects wasr = 0.85, SEE = 2.22 liters. Theseresults add further support to the validity of the Hanai theory, theequation used, and the conclusion that ECW and ICW volume can bepredicted by an approach based solely on fundamental principles.

  相似文献   

2.
OBJECTIVE: The present study was aimed to assess the effects of subclinical hypothyroidism on body composition (BC). SUBJECTS: Thirty-one women (age: 37 +/- 9.9 years) with a wide range of body mass index (BMI) were studied. Subclinical hypothyroidism was defined by a basal TSH > or = 4 mU/L and/or TRH stimulated peak > or = 30 mU/L. MEASUREMENTS: For each subject, weight, height, BMI, multifrequency bioelectrical impedance spectroscopy (BIS) and D2O and NaBr dilution tests were performed to assessed total body water (TBW) and extracellular water (ECW). Thyroid function (basal and TRH stimulated TSH, free T3, and free T4) were determined from fasting blood samples for all subjects. Total body dual energy X-ray absorptiometry (DXA) were used to measure fat mass (FM) and lean mass (Lean). RESULTS: The results of BIS were compared with the TBW and ECW estimated by the dilution techniques on the same individuals. The correlation was R2 = 0.65 for impedance at 5 kHz and ECW by NaBr and R2 = 0.72 for impedance at 100 kHz and TBW by D2O. Intracellular water (ICW) was calculated as differences between TBW and ECW measured by dilution methods. Percent of ECW and ICW were related to BMI (ANOVA, p < 0.001). No difference in TBW, body water distribution and body composition related to thyroid function was demonstrated. CONCLUSIONS: In our patients affected with subclinical hypothyroidism, with or without obesity, only obesity appeared related to TBW, ECW and ICW; the subclinical hypothyroidism, on the contrary, had no effect on compartments of body fluids. Bioimpedance is a valid tool to assess body fluid distribution in subclinical hypothyroidism.  相似文献   

3.
Among judo athletes, strong grip strength is crucial for performing offensive and defensive maneuvers that rely predominantly on forearm maximal strength (FMS). The study aims were to evaluate changes in total-body water (TBW) and its compartments (extracellular water [ECW] and intracellular water [ICW]) and their relationship with loss of FMS in elite judo athletes. At baseline (weight stability), 27 male elite athletes were evaluated (age: 23.2 ± 2.8 years) and again evaluated 1-3 days before competition. Athletes were free to gain or lose weight based upon their specific competition needs. Using dilution techniques (deuterium and bromide), TBW and ECW were estimated, and ICW was calculated (ICW = TBW - ECW). Fat, fat-free mass, and appendicular lean soft tissue (LST) were assessed by dual-energy x-ray absorptiometry. Handgrip was used to assess FMS. Using a reduction of 2% as a representative outcome for decreased FMS, 10 athletes were identified as having lost FMS, whereas 17 changed <2% or gained. Comparison of means and logistic regression analysis were performed. Results from baseline to before competition indicated that those who lost ≥2% of FMS significantly decreased TBW and ICW by -2.7 ± 3.0 and -4.4 ± 4.2%, respectively. The groups differed in ICW changes (-4.4 ± 4.2 vs. 1.9 ± 6.1%), respectively, for those who lost FMS by ≥2%. The ICW changes, but not in TBW or ECW, significantly predicted the risk of losing FMS (β = 0.206; p = 0.027), even adjusting for weight and arm LST changes. These findings indicated that reductions in ICW increased the risk of losing grip strength in elite judo athletes.  相似文献   

4.
Bioimpedance spectroscopy (BIS) is a technique of interest in the study of human pregnancy because it can assess extracellular (ECW), intracellular (ICW), and total body water (TBW) as ECW plus ICW. The technique requires appropriate resistivity coefficients and has not been sufficiently evaluated during the reproductive cycle. Therefore, in a methodological study, we estimated ECW, ICW, and TBW, by means of BIS, and compared the results with the corresponding estimates obtained by using reference methods. Furthermore, results obtained by means of population-specific resistivity coefficients were compared with results obtained by means of general resistivity coefficients. These comparisons were made before pregnancy, in gestational weeks 14 and 32, as well as 2 wk postpartum in 21 healthy women. The reference methods were isotope and bromide dilution. Average ICW, ECW, and TBW, estimated by means of BIS, were in agreement with reference data before pregnancy, in gestational week 14, and postpartum. The corresponding comparison in gestational week 32 showed good agreement for ICW, whereas estimates by means of BIS were significantly (P < 0.001) lower than the corresponding reference values for ECW and TBW. Thus the BIS technique, which was based on a model developed for the nonpregnant body, estimated increases in ICW accurately, whereas increases in ECW and TBW tended to be underestimated. Estimates obtained by using population-specific and general resistivity coefficients were very similar. In conclusion, the results indicated that BIS is potentially useful for studies during pregnancy but that further work is needed before it can be generally applied in such studies.  相似文献   

5.
The potential of bioelectrical impedance spectroscopy (BIS) for assessing nutritional status in spaceflight was tested in two head-down-tilt bed-rest studies. BIS-predicted extracellular water (ECW), intracellular water (ICW), and total body water (TBW) measured using knee-elbow electrode placement were compared with deuterium and bromide dilution (DIL) volumes in healthy, 19- to 45-yr-old subjects. BIS was accurate during 44 h of head-down tilt with mean differences (BIS - DIL) of 0-0.1 kg for ECW, 0.3-0.5 for ICW, and 0.4-0.6 kg for TBW (n = 28). At 44 h, BIS followed the within-individual change in body water compartments with a relative prediction error (standard error of the estimate/baseline volume) of 2.0-3.6% of water space. In the second study, BIS did not detect an acute decrease (-1.41 +/- 0.91 kg) in ICW secondary to 48 h of a protein-free, 800 kcal/day diet (n = 18). BIS's insensitivity to ICW losses may be because they were predominantly (65%) localized to the trunk and/or because there was a general failure of BIS to measure ICW independently of ECW and TBW. BIS may have potential for measuring nutritional status during spaceflight, but its limitations in precision and insensitivity to acute ICW changes warrant further validation studies.  相似文献   

6.
The hydration of fat free mass (FFM) and extracellular (ECW) and intracellular water (ICW) compartments were studied in 30 obese premenopausal women before and after a 3-mo weight-reduction program and again after a 9-mo weight-maintenance program. Body fat was determined by a four-compartment model. Total body water and ECW were determined by deuterium dilution and bromide dilution, respectively. After the weight-reduction period, mean weight loss was 12.8 kg, and body fat was reduced on average by 10.9 kg. During weight maintenance, changes in body mass and body fat were not significant. Before weight reduction, mean ECW/ICW ratio was relatively high (0.78 +/- 0.10). During the the study, total body water and ICW did not change significantly. ECW did not change significantly after weight reduction, but 12 mo after the start ECW was significantly increased by 1 liter. The ECW/ICW ratio increased to 0.87 +/- 0.12 (month 12). The hydration of the FFM increased from 74 +/- 1 to 77 +/- 2% during the weight reduction and remained elevated during weight maintenance. In conclusion, the ECW/ICW ratio and the hydration of the FFM, did not normalize during weight reduction and weight maintenance.  相似文献   

7.
This study aimed at analyzing the contribution of genetic and environmental factors on phenotypic variation of various traits of body composition. Subjects were 30 same-sexed pairs of twins including 20 monozygous (MZ) and 10 dizygous (DZ) pairs, aged 19-62 years. Zygosity was determined by DNA typing and morphological diagnosis. Body composition parameters (fat mass FM, lean body mass LBM, body cell mass BCM, extracellular mass ECM, total body water TBW, extracellular water ECW, and intracellular water ICW) were estimated by tetrapolar bioelectrical impedance analysis. Potential environmental factors influencing body composition (number of children, sporting activity and smoking behaviour) were determined by questionnaires. Heritabilities for traits of body composition were calculated by use of the twin method. Intraclass correlation is > 0.80 for the variation of LBM, BCM, ECM, TBW, ECW, and ICW in both MZ and DZ twins. Estimated heritability (h2) for FM, LBM, BCM, ECW, TBW, ECW, and ICW is 65%, 77%, 79%, 83%, 76%, 68%, and 82%, respectively. The h2 values for FM and LBM are consistent with those reported in other twin studies. For BCM, ECM, ECW and ICW, no comparative h2 estimates exist. Within-pair differences in body compartments do not change with increasing age in MZ and DZ twin pairs (p > 0.05). Stepwise multiple regression analyses indicate that zygosity, age, sex, number of children, sporting level and smoking behaviour do not significantly predict within-pair differences for weight, BMI, FM, LBM, TBW, ECW and ICW (each, p > 0.05). In contrast, sex and the number of children explain together 27% of observed within-pair differences for BCM. Zygosity is the only significant predictor of within-pair differences for ECM and height, explaining 20% (p = 0.008) and 36% of variance, respectively (p < 0.0001). Results indicate that genetic factors exert stronger influences on body composition than the considered environmental traits.  相似文献   

8.
Aging is associated with the onset of chronic diseases that lead to pathological expansion of the extracellular water (ECW) compartment. Healthy aging, in the absence of disease, is also reportedly accompanied by a relative expansion of the ECW compartment, although the studies on which this observation is based are few in number, applied different ECW measurement methods, included small ethnically homogeneous subject samples, and failed to adjust ECW for non-age-related influencing factors. The aim of the current study was to examine, in a large (n = 1,538) ethnically diverse [African American (AA), Asian, Caucasian, Hispanic] subject group the cross-sectional relationships between ECW and age after controlling first for other potential factors that may influence fluid distribution. ECW and intracellular water (ICW) were derived from measured total body water (isotope dilution) and potassium (40K whole body counting). The cross-sectional relationships between ECW, ICW, and ECW/ICW (E/I), and age were developed using multiple regression modelling methods. Body weight, weight squared, height, age, sex, race, and interactions were all significant ECW predictors. The slope of the observed race x age interaction was significantly greater in AA (beta = 0.0005, P = 0.005) than in the three other race groups. Race, sex, and age differences in fluid distribution persisted after adjusting for body composition in a subgroup (n = 994) with dual-energy X-ray absorptiometry lean soft tissue and fat measurements. A relative ECW expansion (i.e., E/I) was present with greater age in most sex-race groups, although the effect was not significantly larger in AA males (P > 0.05) compared with the other race groups, except Asians (P < 0.05). For females, a larger E/I-age effect was found in AA compared with the other race groups, but only the comparison against Hispanics was significant (P < 0.05). The ECW compartment and E/I are thus variably larger, according to race, in healthy older subjects independent of sex, lean soft tissue, and fat mass.  相似文献   

9.
Body resistance and reactance to the conduction of an alternating electrical current were measured using electrodes attached to distal and proximal portions of limbs in anesthetized dogs. Body impedance was calculated from these measurements obtained at 30-min time intervals during a control period and after intravenous administration of 0.9% saline. Extracellular (ECW) and total body water (TBW) were determined by bromide and heavy water dilution techniques, respectively. Baseline impedance obtained from proximal electrodes was related to ECW (r = 0.95, P less than 0.001) and TBW (r = 0.80, P less than 0.02). After saline infusion, proximal electrodes detected a significant fall in impedance (P less than 0.001), whereas distal electrodes did not (P = 0.06). Furthermore, ECW and TBW could be estimated from the drop of proximal impedance after this bolus infusion (r = 0.82, P less than 0.02, and r = 0.86, P less than 0.01, respectively), but not from distal impedance measurements. Proximally placed impedance electrodes are superior to traditionally used distal electrodes for assessment of body fluid changes in the dog.  相似文献   

10.
The traditionalmethod of assessing total body water (TBW), extracellular water (ECW),and intracellular water (ICW) has been the use of isotopes, on thebasis of the dilution principle. Although the development ofbioelectrical impedance techniques has eliminated many of themeasurement constraints associated with the dilution methods, thedegree of interchangeability between the two methods remains uncertain.We used multifrequency bioelectrical impedance spectroscopy (BIS),2H2Odilution, and bromine dilution to assess TBW, ECW, and ICW in 469 healthy subjects (248 males, 221 females) aged 3-29 yr. We foundthat the TBW, ECW, and ICW estimates for the BIS and dilution methodswere significantly correlated(r2 = 0.80-0.96, P < 0.0001, SE ofthe estimate = 2.3-2.7 liters). On the basis of population, theconstants used in the BIS analysis could be adjusted so that the meandifferences with the dilution methods would become zero. The SD valuesfor the mean differences between the dilution and BIS methods, however,remained significant for both males and females: TBW (±2.1-2.8liters), ECW (±1.4-1.6 liters), and ICW (2.0-3.1 liters).To improve the accuracy of the BIS measurement for an individual withinthe age range we have examined, further refinement of the constantsused in the BIS analysis is needed.

  相似文献   

11.
Objective: The aim of this study was to develop and compare two DXA‐based four‐compartment [body weight = body cell mass (BCM) + extracellular fluid (ECF) + extracellular solids (ECS) + fat] cellular level models. Research Methods and Procedures: Total body potassium (TBK) model: BCM from TBK by whole‐body counting—ECFTBK = LST ? [BCMTBK + 0.73 × osseous mineral (Mo)]. Bromide model: ECF from sodium bromide dilution—BCMBROMIDE = LST ? (ECFBROMIDE + 0.73 × Mo); Mo and LST measurements came from DXA. The two approaches were evaluated in 99 healthy men and 118 women. Results: BCM estimates were highly correlated (r = 0.97, p < 0.001), as were ECF estimates (r = 0.87, p < 0.001); a small statistically significant mean difference was present (mean ± SD; BCMTBK model, 30.4 ± 8.9 kg; BCMBROMIDE, 31.4 ± 9.3 kg; Δ = 1.0 ± 2.8 kg; p < 0.001; ECFTBK, 18.5 ± 4.2 kg; ECFBROMIDE, 17.5 ± 3.6 kg; Δ = 1.0 ± 2.8 kg; p < 0.001). A high correlation (r = 0.97, p < 0.001) and good agreement (38.9 ± 9.5 vs. 38.9 ± 9.5 kg; Δ = 0.0 ± 2.4 kg; p = 0.39) were present between TBW, derived as the sum of intracellular water from TBK and ECW from bromide, and measured TBW by 2H2O dilution. Discussion: Two developed four‐compartment cellular level DXA models, one of which is appropriate for use in most clinical and research settings, provide comparable results and are applicable for BCM and ECF estimation of subject groups with hydration disturbances.  相似文献   

12.
This article reports a study in which the equation for total body water (TBW) estimated from deuterium (2H2O)-dilution method and bioelectrical impedance measurement (BIM) is described. Subjects were 60 healthy males aged 30 +/- 18.3 yr (18-74) and 31 healthy females aged 37 +/- 17.5 yr (19-70). Total body water determined by the analysis of the dilution of orally ingested deuterium oxide (1g2H2O, 99.75 atom % excess/kg body weight) in urine. Bioelectrical impedance was measured for each subjects in a supine position using an electrical impedance analyzer (500 microA, 50kHz, T-1988K, Toyo Physical Inc.) with a four electrodes (Y-250, Nihon Kohden). The mean values of total body water and the impedance in males and females subjects were 34.1 +/- 4.27 l and 25.7 +/- 2.42 l, 567 +/- 28.5 omega and 562 +/- 32.5 omega, respectively. Height squared divided by resistance (Ht2/R) correlated well with TBW as measured by 2H2 O, r = 0.530 (p less than 0.001) in males and r = 0.782 (p less than 0.001) in females. The best-fitting regression equation to predict TBW comprised Ht2/R(X1) and body weight (X2) (R = 0.915, SEE = 1.70 l in males and R = 0.834, SEE = 1.28 l in females). Equations were provided with BIM instrument for the prediction of TBW: for males TBW, l = 0.1983X1 + 0.4004X2 - 0.7938 and for females TBW, l = 0.3536X1 + 0.1269X2 + 3.3417. These results suggest that bioelectrical impedance measurement is a useful measure of total body water in Japanese subjects.  相似文献   

13.
The 1994 National Institutes of Health Technology Conference on bioelectrical impedance analysis (BIA) did not support the use of BIA under conditions that alter the normal relationship between the extracellular (ECW) and intracellular water (ICW) compartments. To extend applications of BIA to these populations, we investigated the accuracy and precision of seven previously published BIA models for the measurement of change in body water compartmentalization among individuals infused with lactated Ringer solution or administered a diuretic agent. Results were compared with dilution by using deuterium oxide and bromide combined with short-term changes of body weight. BIA, with use of proximal, tetrapolar electrodes, was measured from 5 to 500 kHz, including 50 kHz. Single-frequency, 50-kHz models did not accurately predict change in total body water, but the 50-kHz parallel model did accurately measure changes in ICW. The only model that accurately predicted change in ECW, ICW, and total body water was the 0/infinity-kHz parallel (Cole-Cole) multifrequency model. Use of the Hanai correction for mixing was less accurate. We conclude that the multifrequency Cole-Cole model is superior under conditions in which body water compartmentalization is altered from the normal state.  相似文献   

14.
There is renewed interest in Siri's classic three-compartment (3C) body composition model, requiring body volume (BV) and total body water (TBW) estimates, because dual-energy X-ray absorptiometry (DEXA) and in vivo neutron activation (IVNA) systems cannot accommodate subjects with severe obesity. However, the 3C model assumption of a constant ratio (alpha) of mineral (M) to total body protein (TBPro) and related residual mass density (D(RES)) based on cadaver analyses might not be valid across groups differing in sex, race, age, and weight. The aim of this study was to derive new 3C model coefficients in vivo and to compare these estimates to those derived by Siri. Healthy adults (n = 323) were evaluated with IVNA and DEXA and the measured components used to derive alpha and D(RES). For all subjects combined, values of alpha and D(RES) (means +/- SD, 0.351 +/- 0.043; 1.565 +/- 0.023 kg/l) were similar to Siri's proposed values of 0.35 and 1.565 kg/l, respectively. However, alpha and D(RES) varied significantly as a function of sex, race, weight, and age. Expected errors in percent body fat arising by application of Siri's model were illustrated in a second group of 264 adults, including some whose size exceeded DEXA limits but whose BV and TBW had been measured by hydrodensitometry and (2)H(2)O dilution, respectively. Extrapolation of predictions by newly developed models to very high weights allows percent fat error estimation when Siri's model is applied in morbidly obese subjects. The present study results provide a critical evaluation of potential errors in the classic 3C model and present new formulas for use in selected populations.  相似文献   

15.
Multiple-frequency bioimpedance analysis (MFBIA) has been used to determine the cellular water composition in the human body. It is noninvasive and has demonstrated good correlations with other invasive measures of tissue water. However, the ability of this method to study transient changes in tissue water in specific muscle groups has not been explored. In this study, MFBIA was used to assess changes in forearm intracellular water (ICW), extracellular water (ECW), and total water (TW) in seven healthy volunteers during and after a progressive wrist flexion exercise protocol. In an identical trial, (31)P magnetic resonance spectroscopy ((31)P-MRS) was used to assess changes in intracellular pH and phosphocreatine (PCr). At the completion of exercise, forearm ICW increased 12.6% (SD 0.07, P = 0.003), TW increased 10.1% (SD 0.06, P = 0.005), and no significant changes were recorded for ECW. A significant correlation was found between the changes in intracellular pH and changes in ICW during exercise (r = -0.84, P = 0.018). With the use of regression analysis, average changes in P(i), PCr, and pH were found to predict changes in ICW (R(2) = 0.98, P = 0.005). In conclusion, MFBIA was sensitive enough to measure transient changes in the exercising forearm muscle. The changes seen were consistent with the hypothesis that intracellular acidification and PCr hydrolysis are important mediators of cellular osmolality and therefore may be responsible for the increased volume of water in the intracellular space that is often recorded after short-term high-intensity exercise.  相似文献   

16.
This comparative study, conducted on 28 boys and girls of widely varying fatness, was designed to validate a new whole-body composition method [total body electrical conductivity (TOBEC)], based on bioelectrical properties of the human body. A significant correlation [r = 0.911; standard error of the estimate (SEE) = 5.3 kg] was demonstrated between the transformed TOBEC scores (TOBEC0.5 X Ht) and lean body mass (LBM) determined by hydrodensitometry and corrected for individual variations in hydration (LBMd + W). TOBEC determinations also correlated well with 1) total body water determined by deuterium oxide dilution (r = 0.877; SEE = 4.5 liters), 2) total body potassium determined by means of a 4 pi whole-body counter (r = 0.860; SEE = 430.7 meq), 3) LBM derived from skinfold thicknesses (r = 0.850; SEE = 5.8 kg). The residuals of the regression between LBMd + W and TOBEC scores did not show any significant correlation with either the potassium or the water content of the LBM. The results indicate that TOBEC is a simple, rapid, reliable, and noninvasive technique for delineating changes in body composition that occur in children during growth.  相似文献   

17.
The purpose of this study was to develop a method for measuring intracellular (ICW) and extracellular water (ECW) in the human forearm using multiple frequency bioimpedance analysis (MFBIA). The approach was (i) to measure whole-body and forearm fat-free mass using dual X-ray absorptiometry (DXA); (ii) to use these measurements to estimate the fat-free mass (FFM) resistivity in both the forearm and in the whole body; and (iii) to use the ratio of these FFM resistivities to estimate the resistivity in the ICW and ECW compartments of the forearm. To first demonstrate the accuracy of the DXA software in differentiating lean body mass from fat and bone within a volume of tissue, ex-vivo bovine muscle tissue samples (n = 3) were used to approximate the physical properties of the human forearm. It was found that although the human whole-body software overestimates FFM, it was slightly underestimated by the small animal software. Using this technique, DXA measures of FFM were obtained from human volunteers (n = 11; age = 20 +/- 5 years; height = 170 +/- 12 cm; mass = 64 +/- 16 kg). These measures were used in conjunction with MFBIA measures of impedance of the whole body and of the forearm to determine the resistivities of the ICW and ECW compartments of the forearm, namely 375.8 +/- 25.2 ohms cm and 55.6 +/- 3.7 ohms cm, respectively. These were used in MFBIA equations to calculate the ICW, ECW, and total arm water (TAW) volumes of the human forearm. The calculated TAW and the ECW (+/- SD) volume fraction (667.29 +/- 200.15 mL and 0.169 +/- 0.039 mL, respectively) were in agreement with literature values. MFBIA results were compared with those obtained using nuclear magnetic resonance relaxometry (NMRR). MFBIA was performed on 15 subjects before and after an intense maximal handgrip exercise to estimate changes in water volume in muscle. Following exercise, the total and intracellular water of the forearm increased on average by 8% +/- 3% and 10% +/- 4% (mean +/- SD), respectively. In 5 healthy volunteers, MFBIA and NMRR were performed before and after a similar exercise of the forearm muscle. The changes with exercise of intracellular and total arm water volumes as measured by MFBIA were estimated. The percent increases in total water were found to be 9.4% +/- 4.2% and 9.4% +/- 2.6% and in intracellular water were found to be 10.6% +/- 4.6% and 12.0% +/- 2.8% (mean +/- SD) for NMRR and MFBIA, respectively. The results show that the exercise-induced changes in ICW and TAW determined with the MFBIA model are consistent with those observed with NMRR and radiotracer literature.  相似文献   

18.
This study compared body composition by dual-energy X-ray absorptiometry (DEXA; Lunar DPX-L) with that via a four-compartment (4C; water, bone mineral mass, fat, and residual) model. Relative body fat was determined for 152 healthy adults [30.0 +/- 11.1 (SD) yr; 75.10 +/- 14.88 kg; 176.3 +/- 8.7 cm] aged from 18 to 59 yr. The 4C approach [20.7% body fat (%BF)] resulted in a significantly (P < 0.001) higher mean %BF compared with DEXA (18.9% BF), with intraindividual variations ranging from -2.6 to 7.3% BF. Linear regression and a Bland and Altman plot demonstrated the tendency for DEXA to progressively underestimate the %BF of leaner individuals compared with the criterion 4C model (4C %BF = 0.862 x DEXA %BF + 4.417; r(2) = 0.952, standard error of estimate = 1.6% BF). This bias was not attributable to variations in fat-free mass hydration but may have been due to beam-hardening errors that resulted from differences in anterior-posterior tissue thickness.  相似文献   

19.
To determine the relationship between total body water (TBW) fraction and local water content measured in the skin (SW) this study assessed eight anesthetized piglets in an overhydration model. TBW was assessed by deuterium oxide dilution and body mass measurements taken throughout the experiments, and by whole body carcass analysis at the end of each experiment. Additionally, extracellular water and plasma volume were assessed using bromide dilution and Evan's blue dilution, respectively. SW was assessed by tissue biopsies taken at 60-min intervals throughout the experiment. Lean body water (LBW) fraction and lean skin water (LSW) fraction were assessed by extracting the fat from the carcass and biopsy samples. A correlation does exist between TBW fraction and SW fraction with r2=0.58 (P<0.05); however, the strongest correlation occurred between the LBW fraction and LSW fraction with r2=0.87 (P<0.05) and an SE of prediction of 0.77%. These data demonstrate that LSW gives an accurate and precise estimate of LBW and could therefore be used to determine the hydration index in appropriate research settings.  相似文献   

20.
We compared carcass analysis and hydrogen isotope dilution methods to measure total body water (TBW) and body composition in a small altricial carnivore, the mink. Dilution space (D) of mink at 21-42 days of age (n=20), was determined after subcutaneous administration of tritiated water. The same animals were then used to determine TBW and body composition by carcass analysis and to derive predictive empirical relationships between TBW and total body fat, protein and energy. A separate validation set of 27 kits was used to test the accuracy of predicting body composition from TBW. D overestimated TBW by a consistent and predictable 4.1% (R(2)=0.999, P<0.001). Our estimates of fat, protein and energy content, using equations derived from TBW, were not significantly different than those obtained from direct carcass analysis (P>0.980) in either the initial or validation set of mink. TBW was shown to decrease from 81 to 76% and total body protein to increase from 14 to 19% of LBM of the kits from 21 to 42 days of age. Although a rapidly changing hydration state was apparent in neonates, we conclude that when this is taken into account, accurate estimates of body composition can be obtained from hydrogen isotope dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号