首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
动物克隆   总被引:6,自引:0,他引:6  
简要介绍了动物克隆技术的发展历史和现状,以及该项技术在医学、畜牧业、濒危动物保护等研究领域的应用前景。  相似文献   

3.
4.
5.
环境中约99.8%的微生物不能用常规的微生物学方法培养,这样就使得绝大部分微生物资源的开发利用受到制约,而宏基因组克隆技术的产生则克服了对不可培养微生物研究的困难。到目前为止,通过宏基因组克隆技术已经获得了许多新的抗生素和酶的基因,而且随着该技术的不断完善将会加大有用分子发现的几率和对复杂微生物群落功能的了解。  相似文献   

6.
7.
8.
Universal TA cloning   总被引:1,自引:0,他引:1  
TA cloning is one of the simplest and most efficient methods for the cloning of PCR products. The procedure exploits the terminal transferase activity of certain thermophilic DNA polymerases, including Thermus aquaticus (Taq) polymerase. Taq polymerase has non-template dependent activity which preferentially adds a single adenosine to the 3'-ends of a double stranded DNA molecule, and thus most of the molecules PCR amplified by Taq polymerase possess single 3'-A overhangs. The use of a linearized "T-vector" which has single 3'-T overhangs on both ends allows direct, high-efficiency cloning of PCR products, facilitated by complementarity between the PCR product 3'-A overhangs and vector 3'-T overhangs. The TA cloning method can be easily modified so that the same T-vector can be used to clone any double-stranded DNA fragment, including PCR products amplified by any DNA polymerase, as well as all blunt- and sticky-ended DNA species. This technique is especially useful when compatible restriction sites are not available for the subcloning of DNA fragments from one vector to another. Directional cloning is made possible by appropriate hemi-phosphorylation of both the T-vectors and the inserts. With a single T-vector at hand, any DNA fragment can be cloned without compromising the cloning efficiency. The universal TA cloning method is thus both convenient and labor-saving.  相似文献   

9.
10.
Z Liu 《Nucleic acids research》1996,24(12):2458-2459
  相似文献   

11.
12.
We have developed an efficient strategy for cloning of PCR products that contain an unknown region flanked by a known sequence. As with ligation-independent cloning, the strategy is based on homology between sequences present in both the vector and the insert. However, in contrast to ligation-independent cloning, the cloning vector has homology with only one of the two primers used for amplification of the insert. The other side of the linearized cloning vector has homology with a sequence present in the insert, but nested and non-overlapping with the gene-specific primer used for amplification. Since only specific products contain this sequence, but none of the non-specific products, only specific products can be cloned. Cloning is performed using a one-step reaction that only requires incubation for 10 minutes at room temperature in the presence of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. The reaction mix is then directly transformed into E. coli where the annealed vector-insert complex is repaired and ligated. We have tested this method, which we call quick and clean cloning (QC cloning), for cloning of the variable regions of immunoglobulins expressed in non-Hodgkin lymphoma tumor samples. This method can also be applied to identify the flanking sequence of DNA elements such as T-DNA or transposon insertions, or be used for cloning of any PCR product with high specificity.  相似文献   

13.
RecA-independent recombinations accompanying the processes of plasmids preparation and cloning into Escherichia coli cells are induced within the short direct and inverted repeats of several types.  相似文献   

14.
Human telomeres have been succesfully cloned in Saccharomyces cerevisiae by complementing deficient yeast artificial chromosomes (YACs). This technique allows cloning of DNA sequences that can recognize particular chromosomal ends, and therefore facilitates the mapping of eukaryotic genomes. Although the biology of adopting foreign telomeres in yeast is not fully understood, the cloning system itself seems to be a useful tool for constructing telomeric DNA libraries from higher eukaryotes. Here we describe the techniques that are currently being used in cloning of telomeric DNA.  相似文献   

15.
16.
Spiliotis M 《PloS one》2012,7(4):e35407
Inverse fusion PCR cloning (IFPC) is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.  相似文献   

17.
Rapid one-step recombinational cloning   总被引:1,自引:0,他引:1       下载免费PDF全文
As an increasing number of genes and open reading frames of unknown function are discovered, expression of the encoded proteins is critical toward establishing function. Accordingly, there is an increased need for highly efficient, high-fidelity methods for directional cloning. Among the available methods, site-specific recombination-based cloning techniques, which eliminate the use of restriction endonucleases and ligase, have been widely used for high-throughput (HTP) procedures. We have developed a recombination cloning method, which uses truncated recombination sites to clone PCR products directly into destination/expression vectors, thereby bypassing the requirement for first producing an entry clone. Cloning efficiencies in excess of 80% are obtained providing a highly efficient method for directional HTP cloning.  相似文献   

18.
19.
20.
“Molecular cloning” meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号