首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to investigate the effects of aging and long-term dietary antler supplementation on the calcium-regulating hormones and bone status in ovariectomized (Ovx) SAMP8 mice. The female SAMP8 mice were divided into four groups (in each group n = 6), Ovx or sham operated at the age of 2 months, and fed with 0.2% antler containing diet or control diet from the age of 2.5 months. The samples were collected at the age of 3, 6, 9, 12, and 15 months, respectively, for physicochemical analyses, biochemical analyses, and the determination of hormones by radioimmunoassay. The results showed that plasma calcium (Ca) concentrations were maintained in a narrow range in all groups throughout the whole experimental period. With aging and/or ovariectomy, plasma parathyroid hormone (PTH) and 1,25-dihydroxycholecalciferol (1,25-(OH)2-D3) levels increased, and plasma phosphorus (P) and calcitonin (CT) levels decreased, and the femoral bone densities and Ca contents increased during the earlier stage, and then decreased gradually in all groups. Plasma PTH and 1,25-(OH)2-D3 levels in the Ovx mice were significantly higher than those in the intact mice, and plasma P concentrations, plasma CT levels, femoral bone densities, and femoral Ca contents in the Ovx mice were significantly lower than those in the intact mice. In addition, the decreases of plasma P levels, plasma CT levels, femoral bone densities, and femoral Ca contents, and the increases of plasma PTH levels were moderated by antler administration in both Ovx and intact mice. However, there was no effect of the dietary antler supplementation on the plasma 1,25-(OH)2-D3 levels in the female mice. It is concluded that prolonged dietary antler supplementation has important positive effects on bone loss with age and/ or ovarian function deficiency.  相似文献   

2.
Chen H  Emura S  Yao XF  Shoumura S 《Tissue & cell》2004,36(6):409-415
SAMP6, a substrain of senescence-accelerated mouse, was developed as an animal model for senile osteoporosis. We investigated the morphology of the parathyroid gland and thyroid C cell, together with the serum parathyroid hormone (PTH) and calcitonin (CT) in SAMP6 and age-matched normal mice SAMR1. We did not find any significant differences between SAMR1 and SAMP6 at 1 month of age with regard to the serum PTH level and the morphology of the parathyroid glands. As compared with SAMR1, the serum PTH level was significantly higher in SAMP6 at 2, 5 and 12 months of age. In the parathyroid chief cells of SAMP6 at 2, 5 and 12 months of age, the Golgi complexes and the cisternae of the granular endoplasmic reticulum were well developed. Numerous secretory granules were located near the plasma membranes and mitoses were sometimes observed. There was no marked difference between SAMR1 and SAMP6 regarding the morphology of the thyroid C cells and the serum CT level. These findings suggest that the secretory activity of the parathyroid gland is stimulated in SAMP6 at 2, 5 and 12 months of age. The parathyroid follicle was sometimes found in SAMP6, and the significance of this structure was also discussed.  相似文献   

3.
The effect of aging on the status of macrominerals and trace elements in tissues was studied using two strains (SAMP1 and SAMR1) of senescence accelerated mouse. Two-month-old, 6-mo-old, and 10-mo-old female SAMP1 and SAMR1 mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, phosphorus, sulfur, sodium, and potassium concentrations in blood, liver, kidney, brain, and tibia of the mice were determined. The copper concentration in the brain was significantly increased with age in SAMP1 and SAMR1. In addition, the brain copper levels in SAMP1 were significantly higher than that in SAMR1 at respective ages. The calcium concentration in the kidney was significantly increased with age, but the copper and phosphorus concentrations significantly decreased with age in SAMP1 and SAMR1. In the liver of SAMR1, all minerals measured in this study except for sodium and potassium were significantly decreased with age. In addition, all mineral concentrations in the liver of 2-mo-old mice in SAMR1 except for copper and sodium were markedly higher than those in SAMP1 of the same age. These results suggest that the genetic factor is related to the age-associated mineral changes in tissues.  相似文献   

4.
SAMP6, a substrain of senescence-accelerated mice, was developed as an animal model for senile osteoporosis. In the present study, we investigated the bone morphology, together with serum calcium and bone mineral density (BMD) in SAMP6 and age-matched normal mice SAMR1. We did not find any significant differences between SAMR1 and SAMP6 at 1 month of age with regard to the serum compositions and bone morphology. As compared with SAMR1, BMD, the femoral weight, femoral calcium and phosphorus levels were significantly reduced in SAMP6 at 2 and 5 months of age. The number of osteoblasts in trabecular bones was also significantly reduced. Swollen mitochondria and myelin-like structures were found in osteoblasts and osteocytes of SAMP6 mice at 2 and 5 months of age. There was a greater proportion of resting surface and less forming surface in the femoral endosteal surfaces of SAMP6 mice. The amount of trabecular bone in the lumbar vertebra and the distal metaphysis of the femur was reduced. The number of the mast cells in bone marrow of the tibia significantly increased in SAMP6 mice. These findings indicate that the lower bone mass in SAMP6 was due to the reduction in osteoblast formation and suggested that mast cells in bone marrows play a role in the pathogenesis of senile osteoporosis.  相似文献   

5.
Senescence-accelerated mouse prone 6 (SAMP6) is a model of senile osteoporosis. From 10 to 22 wk of age, SAMP6 mice were heavier than age-matched AKR/J and SAMR1 mice. Body mass indices of 10- and 25-wk-old SAMP6 mice were higher than those of age-matched AKR/J and SAMR1 mice, indicating obesity in the SAMP6 animals. We compared the blood biochemical values among SAMP6, SAMR1, and AKR/J mice to assess whether the SAMP6 strain has abnormal obesity-related parameters. Plasma glucose, triglyceride, insulin, and leptin levels were higher in 10-wk-old SAMP6 mice than in age-matched SAMR1 and AKR/J mice, whereas plasma glucagon and adiponectin levels in 25-wk-old SAMP6 were lower compared with those in age-matched SAMR1 and AKR/J. Total cholesterol levels in SAMR1 and SAMP6 mice at 10 and 25 wk of age were higher than those in AKR/J mice. Hepatic lipid levels were higher in 10- and 25-wk-old SAMP6 mice compared with age-matched AKR/J and SAMR1 animals. These results indicate that SAMP6 mice exhibit obesity and hyperlipidemia, suggesting that the SAMP6 strain is a potential tool for the study of hyperlipidemia.Abbreviations: BMI, body mass indexThe senescence-accelerated mouse strains were developed through selective breeding of AKR/J mice based on graded scores for senescence and pathologic phenotypes.44 The 9 senescence-prone (SAMP) strains all have a shortened lifespan and display an early onset of senescence after normal development and maturation, whereas the 3 senescence-resistant (SAMR) strains are resistant to early senescence and serve as controls. Among the SAMP strains, SAMP8 and SAMP10 exhibit deficits in learning and memory at a relatively early stage in their lifespan.6,30 In contrast, SAMP6 mice are considered to be a model of senile osteoporosis, with their low bone mass and slow bone loss;24 the bone mineral density of SAMP6 mice decreases after 4 mo of age.14,17Our regular measurement of body weight revealed that SAMP6 mice were significantly higher between 10 and 22 wk of age than were age-matched SAMR1 and AKR/J. Based on this observation, we decided to compare body mass indices (BMIs), blood biochemical values, and liver sections among mice of these strains at 10 and 25 wk of age, which respectively correspond to the beginning and end of a period of significant body weight gain in SAMP6 mice compared with age-matched SAMR1 and AKR/J. Increased BMIs of SAMP6 mice at 10- and 25 wk compared with those of age-matched AKR/J and SAMR1 animals would indicate obesity in the SAMP6. In addition, because osteoblasts and adipocytes are thought to share a common precursor cell, osteoporosis and enhanced adipogenesis may be related. For example, adipogenesis in the bone marrow increases with aging and during osteoporosis,15,33,34 and increased bone turnover occurs in hypercholesterolemic or dyslipidemic patients.22 Therefore obesity in SAMP6 mice might be due at least in part to enhanced adipogenesis. We measured and compared blood biochemical values among SAMP6, SAMR1, and AKR/J (the founder for the SAM strains) mice to assess whether the SAMP6 strain has abnormalities in blood biochemical markers, such as triglycerides or cholesterol.  相似文献   

6.
In this work, metabonomic methods utilizing (1)H NMR spectroscopy and multivariate statistical technique have been applied to investigate the metabolic profiles of SAM. The serum metabolome of senescence-prone 8 (SAMP8), a murine model of age-related learning and memory deficits and Alzheimer's disease (AD), was compared with that of control, senescence-resistant 1 (SAMR1), which shows normal aging process. Serum samples were collected for study from both male and female 12-month-old SAMP8 and age matched SAMR1 ( n = 5). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The results showed that the serum metabolic patterns of SAMP8 and SAMR1 were significantly different due to strains and genders. Subtle differences in the endogenous metabolite profiles in serum between SAMP8 and SAMR1 were observed. The most important metabolite responsible for the strain separation was lack of inosine, which meant the protective function of anti-inflammation, immunomodulation and neuroprotection might be attenuated in SAMP8. Other differential metabolites observed between strains included decreased glucose, PUFA, choline, phosphocholine, HDL, LDL, D-3-hydoxybutyrate, citrate and pyruvate and increased lactate, SFA, alanine, methionine, glutamine and VLDL in serum of SAMP8 compared with those of SAMR1, suggesting perturbed glucose and lipid metabolisms in SAMP8. Besides the differences observed between the strains, an impact of gender on metabolism was also found. The females exhibited larger metabolic deviations than males and these gender differences in SAMP8 were much larger than in SAMR1. Higher levels of VLDL, lactate and amino acids and lower levels of HDL, LDL and unsaturated lipids were detected in female than in male SAMP8. These facts indicated that the metabolism disequilibrium in female and male SAMP8 was different and this may partly explain that females were more prone to AD than males. The results of this work may provide valuable clues to the understanding of the mechanisms of the senile impairment and the pathological changes of AD, as well as show the potential power of the combination of the NMR technique and the pattern recognition method for the analysis of the biochemical changes of certain pathophysiologic conditions.  相似文献   

7.
Damage to mitochondria as a result of the intrinsic generation of free radicals is theoretically involved in the processes of cellular aging. Herein, we investigated whether acutely administered melatonin, due to its free radical scavenging activity, would influence mitochondrial metabolism. Mitochondrial respiratory activity and respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated-prone mice (SAMP8) and a strain of senescence-accelerated-resistant mice (SAMR1) were measured when the animals were 12 months of age. Respiratory control index (RCI), ADP/O ratio, State 3 respiration and dinitrophenol (DNP)-dependent uncoupled respiration were significantly lower in SAMP8 than in SAMR1. In contrast, State 4 respiration was significantly higher in SAMP8 than in SAMR1. Activities of complexes I and IV in SAMP8 were significantly lower than in SAMR1. Melatonin administration (10mg/kg body weight, intraperitoneally) 1h prior to sacrifice significantly increased RCI, ADP/O ratio, State 3 respiration and DNP-induced uncoupled respiration in SAMP8 while also significantly reducing State 4 respiration in SAMP8. The injection of melatonin also significantly increased complex I activity in both mouse strains and complex IV activity in the liver of SAMP8 mice. These results document an age-related decrease in hepatic mitochondrial function in SAM which can be modified by an acute pharmacological injection of melatonin; the indole stimulated mitochondrial respiratory chain activity which would likely reduce deteriorative oxidative changes in mitochondria that normally occur in advanced age.  相似文献   

8.
Gut microbiota can influence the aging process and may modulate aging‐related changes in cognitive function. Trimethylamine‐N‐oxide (TMAO), a metabolite of intestinal flora, has been shown to be closely associated with cardiovascular disease and other diseases. However, the relationship between TMAO and aging, especially brain aging, has not been fully elucidated. To explore the relationship between TMAO and brain aging, we analysed the plasma levels of TMAO in both humans and mice and administered exogenous TMAO to 24‐week‐old senescence‐accelerated prone mouse strain 8 (SAMP8) and age‐matched senescence‐accelerated mouse resistant 1 (SAMR1) mice for 16 weeks. We found that the plasma levels of TMAO increased in both the elderly and the aged mice. Compared with SAMR1‐control mice, SAMP8‐control mice exhibited a brain aging phenotype characterized by more senescent cells in the hippocampal CA3 region and cognitive dysfunction. Surprisingly, TMAO treatment increased the number of senescent cells, which were primarily neurons, and enhanced the mitochondrial impairments and superoxide production. Moreover, we observed that TMAO treatment increased synaptic damage and reduced the expression levels of synaptic plasticity‐related proteins by inhibiting the mTOR signalling pathway, which induces and aggravates aging‐related cognitive dysfunction in SAMR1 and SAMP8 mice, respectively. Our findings suggested that TMAO could induce brain aging and age‐related cognitive dysfunction in SAMR1 mice and aggravate the cerebral aging process of SAMP8 mice, which might provide new insight into the effects of intestinal microbiota on the brain aging process and help to delay senescence by regulating intestinal flora metabolites.  相似文献   

9.
Chen H  Yao XF  Emura S  Shoumura S 《Tissue & cell》2006,38(5):325-335
SAMP6, a substrain of senescence-accelerated mouse, was developed as an animal model for senile osteoporosis. Previously we observed age-related changes of the bone in SAMP6. In the present study, we investigated the morphology of the skeletal muscle, tendon and periosteum in SAMP6 and age-matched normal mouse SAMR1. We did not find any significant differences between SAMR1 and SAMP6 at 1 and 2 months of age. As compared with SAMR1, the cross-sectional area of type I and type II muscle fibers of the soleus muscle were significantly low in SAMP6 at 8 months of age. The projections in the interface of the muscle-tendon junctions were significantly decreased in SAMP6 at 8 months of age. The number of fibroblasts and the diameter of the tendon collagen fibers in Achilles fiber were significantly reduced in SAMP6 at 8 months of age. The diameter of Sharpey's fiber reduced in SAMP6 at 5 and 8 months of age. Some chondrocytes in the insertions of Achilles tendon and some osteogenic cells in the periosteum showed degenerative changes in SAMP6 at 5 and 8 months of age. The pronounced degenerative changes were detected in the skeletal muscle, muscle-tendon junction, tendon, tendon-bone interface and periosteum in SAMP6 with age. These findings indicated the atrophy of skeletal muscle, degeneration of tendon and periosteum in SAMP6, which may be involved in the bone loss for senile osteoporosis.  相似文献   

10.
Senescence-accelerated mice (SAMP8) have a short life span, whereas SAMR1 mice are resistant to accelerated senescence. Previously it has been reported that the Akv strain of ecotropic murine leukemia virus (E-MuLV) was detected in brains of SAMP8 mice but not in brains of SAMR1 mice. In order to determine the change of MuLV levels following scrapie infection, we analyzed the E-MuLV titer and the RNA expression levels of E-MuLV, xenotropic MuLV, and polytropic MuLV in brains and spinal cords of scrapie-infected SAM mice. The expression levels of the 3 types of MuLV were increased in scrapie-infected mice compared to control mice; E-MuLV expression was detected in infected SAMR1 mice, but only in the terminal stage of scrapie disease. We also examined incubation periods and the levels of PrPSc in scrapie-infected SAMR1 (sR1) and SAMP8 (sP8) mice. We confirmed that the incubation period was shorter in sP8 (210+/-5 days) compared to sR1 (235+/-10 days) after intraperitoneal injection. The levels of PrPSc in sP8 were significantly greater than sR1 at 210+/-5 days, but levels of PrPSc at the terminal stage of scrapie in both SAM strains were virtually identical. These results show the activation of MuLV expression by scrapie infection and suggest acceleration of the progression of scrapie pathogenesis by MuLV.  相似文献   

11.
Cho YM  Bae SH  Choi BK  Cho SY  Song CW  Yoo JK  Paik YK 《Proteomics》2003,3(10):1883-1894
The senescence-accelerated mouse (SAM) is a useful animal model to study aging or age-associated disorders due to its inherited aging phenotype. To investigate proteins involved in the aging process in liver, we compared the young (4- or 20-week old) and the aged group (50-week-old) of SAMP8 (short life span) and SAMR1 (control) mice, and identified 85 differentially expressed distinct proteins comprising antioxidation, glucose/amino acid metabolism, signal transduction and cell cycle systems using proteomics tools. For the antioxidation system, the aged SAMP8 mice showed a large increase in glutathione peroxidase and decreases in glutathione-S-transferase and peroxiredoxin, ranging from 2.5- to 5-fold, suggesting lower detoxification potentials for oxidants in the aged SAMP8 liver. Similarly, levels of key glycolytic enzymes decreased greatly in the aged SAMP8 compared to SAMR1, indicating a disturbance in glucose homeostasis that may be closely related to the typical deficits in learning and memory of the aged SAMP8. Protein profiles of amino acid metabolic enzymes suggest that accumulation of glutamine and glutamate in tissues of the aged SAMP8 may be due to hyperexpression of ornithine aminotransferase and/or glutamate dehydrogenase. Decreases in levels of proteins involved in signal transduction/apoptosis (e.g., cathepsin B) in the aged SAMP8 may support the previously proposed negative relationship between apoptosis and aging. However, the changes described above were not markedly seen in the young group of both strains. For cell cycle systems, levels of selenium binding protein increased about four-fold with age in SAMP8. Yet, almost no change occurred in either the young or the aged SAMR1, which may explain problems associated with cell proliferation and tissue regeneration in the aged SAMP8. In conclusion, composite profiles of key proteins involved in age-related processes enable assessment of accelerated senescence and the appearance of senescence-related pathologies in the aged SAMP8.  相似文献   

12.
Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV) in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1) levels of the capsid antigen CAgag in both cell lysates and culture media, 2) expression of genomic retroelements, 3) the number of virus particles, 4) titer of infectious virus, 5) morphology, 6) replication rate of cells in culture and final cell concentrations, 7) expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.  相似文献   

13.
Chen H  Emura S  Shoumura S 《Tissue & cell》2006,38(3):187-192
Although the parathyroid water-clear cell is very rare, it has clinical significance because of its association with parathyroid hyperplasia or adenoma. SAMP6, a substrain of senescence-accelerated mouse, was developed as an animal model for senile osteoporosis. We investigated the morphology of the parathyroid glands in SAMP6 and age-matched normal mouse SAMR1. The parathyroid water-clear cells, which contained numerous vacuoles and the crystalloid inclusions, were found in SAMP6 mice at 5, 8 and 12 months of age. It was noted that the number of water-clear cells increased with aging, which are fairly consistent with the change of the serum parathyroid hormone (PTH) level. We did not find any water-clear cells in the parathyroid glands of SAMR1 mice. The existence of water-clear cells may represent hyperfunction of the parathyroid glands in SAMP6.  相似文献   

14.
Estrogen deficiency impairs intestinal Ca absorption and induces bone loss, but its effects on the vitamin D-endocrine system are unclear. In the present study, calciotropic hormones levels, renal vitamin D metabolism, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]-dependent intestinal calcium absorption, and bone properties in 3-mo-old sham-operated (sham) or ovariectomized (OVX) rats fed either a normal-Ca (NCD; 0.6% Ca, 0.65% P) or a low-Ca (LCD; 0.1% Ca, 0.65% P) diet for 2 wk were determined. LCD increased serum 1,25(OH)2D3 levels in both sham and OVX rats. Serum parathyroid hormone [PTH(1-84)] levels were highest in OVX rats fed LCD. Renal 25-hydroxyvitamin D1alpha-hydroxylase (1-OHase) protein expression was induced in both sham and OVX rats during LCD, while renal 1-OHase mRNA expression was highest in OVX rats fed LCD. Renal vitamin D receptor (VDR) and mRNA expressions in rats were induced by ovariectomy in rats fed NCD but suppressed by ovariectomy in rats fed LCD. The induction of intestinal calcium transporter-1 and calbindin-D9k mRNA expressions by LCD were not altered by ovariectomy. As expected, bone Ca content, cancellous bone mineral density, and bone strength index in proximal metaphysis of rat tibia were reduced by both ovariectomy and LCD (P<0.05) as analyzed by two-way ANOVA. Taken together, the data demonstrate that ovariectomy alters the responses of circulating PTH levels, renal 1-OHase mRNA expression, and renal VDR expression to LCD. These results suggest that estrogen is necessary for the full adaptive response to LCD mediated by both PTH and 1,25(OH)2D3.  相似文献   

15.
Age-related changes in systolic blood pressure were assessed, using the senescence-accelerated mouse (SAM) model for aging research with strains SAMR1, SAMP1, and SAMP8. Each of the strains manifested a characteristic change in blood pressure with age. The SAMR1 strain, with normal aging, did not have chronologic changes from 2 to 27 months of age. The SAMP1 strain, with accelerated senescence, had a significant increase in blood pressure with age, and some (8 of 39) mice manifested hypertensive vascular disease characterized by high blood pressure, cardiac hypertrophy, and arteriolar fibrinoid necrosis at 11 to 14 months of age. The gradual increase in blood pressure after 8 to 10 months was considered to be preceded by progressive renal changes, from glomerulonephritis to contraction of the kidney, suggesting that the high blood pressure in the SAMP1 strain was of renal origin. Blood pressure in the SAMP8 strain, with age-related deficits in learning and memory, gradually decreased after 5 to 7 months of age, and was suggested to be due to the astrogliotic changes in response to spongiform degeneration in the medulla oblongata at 11 to 14 and 15 to 18 months of age.  相似文献   

16.
BACKGROUND: Previously we have found reduced levels of total serum calcium and 1,25(OH)2D3 despite an unaltered stimulated parathyroid hormone (PTH) secretion 1 year after hemithyroidectomy. The present study was undertaken to elucidate the possible relationship between calcium homeostasis, thyroid hormones and bone resorption in a group of 45 consecutive patients subjected to hemithyroidectomy because of a solitary nodule. All patients had free T4 and T3 levels within normal range preoperatively. METHODS: Thyroid hormones, bone mineral and biochemical variables known to reflect calcium homeostasis were studied. Patients were divided into three separate groups depending on their pre- and postoperative thyroid hormone status. RESULTS: One year postoperatively, serum levels of free T4 were decreased and that of thyrotropin (TSH) increased in the entire group of patients. The concentration of ionized calcium was reduced from 1.25 +/- 0.05 to 1.22 +/- 0.04 (p < 0.001) despite an unaltered PTH value (2.8 +/- 1.0 vs. 3.1 +/- 1.5, p = 0.50). A significant reduction in C-terminal telopeptide type 1 collagen (1CTP) indicated decreased bone resorption 1 year after surgery (p < 0.05). Subgroup analysis showed that a reduction in ionized calcium was seen only among patients with a postoperative decrease in free T4. Patients with subclinical hyperthyroidism preoperatively presented the lowest postoperative levels of ionized calcium, significantly reduced levels of 1CTP and increased levels of phosphate and creatinine. Multiple linear regression analysis showed that age (p < 0.05) and postoperatively changed serum levels of TSH (p < 0.05), creatinine (p < 0.05), phosphate (p < 0.001) and FT4 (p < 0.01) were independently associated with altered levels of ionized calcium. CONCLUSION: We conclude that the reduction in ionized calcium 1 year after hemithyroidectomy was not due to PTH deficiency. Instead our results suggest that the reduced effects of thyroid hormones on bone and kidney function is essential.  相似文献   

17.
Amounts of DNA strand breaks were estimated by the proportion of cells without tails (PCWT) and the average lengths of tail momentum (ALTM) in comet images of tissue cells of senescence-accelerated prone (SAMP1) mouse and senescence-accelerated resistant (SAMR1) mouse. The PCWT and ALTM of brain cells from SAMR1 were unchanged from 4 to 15 months of age. In the case of SAMP1 brain cells, the PCWT decreased and the ALTM increased in an age-related manner from 8 to 15 months of age. In the cases of liver and kidney, the PCWT and the ALTM of both SAMP1 and SAMR1 cells showed constant values from 4 to 15 months of ages.  相似文献   

18.
19.
Senescence-Accelerated Mouse (SAM) strains are used as animal models for gerontological research. Here, we report that the SAMR1 strain, which shows a high sensitivity to toxicity of the parasiticide ivermectin, has a spontaneous retroviral insertional mutation in the ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a) gene. This mutation is identical to that found in Crl:CF1-Abcb1a mice, which are also highly sensitive to ivermectin due to the mutation. The mutant Abcb1a allele was found in SAMR4, SAMR5, SAMP1, SAMP6, SAMP7, and SAMP9, but not in SAMP3, SAMP8, SAMP10, SAMP11, and other outbred and inbred strains, including 129/SvJ strains. These results impart both caution and promise in the use of SAM strains in studies of biological processes in which P-glycoprotein participates.  相似文献   

20.
Looking at cholinesterases (ChEs) changes in age-related mental impairment, the expression of ChEs in brain of senescence accelerated-resistant (SAMR1) and senescence accelerated-prone (SAMP8) mice was studied. Acetylcholinesterase (AChE) activity was unmodified and BuChE activity increased twofold in SAMP8 brain. SAMR1 brain contained many AChE-T mRNAs, less BuChE and PRiMA mRNAs and scant AChE-R and AChE-H mRNAs. Their content unchanged in SAMP8 brain. Amphiphilic (G(4)(A)) and hydrophilic (G(4)(H)) AChE and BuChE tetramers, besides amphiphilic dimers (G(2)(A)) and monomers (G(1)(A)) were identified in SAMR1 brain and their distribution was little modified in SAMP8 brain. Blood plasma does not seem to provide the excess of BuChE activity in SAMP8 brain; it probably arises from glial cell changes owing to astrocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号