首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Pineda AO  Ellington WR 《Gene》2001,265(1-2):115-121
Two major gene duplication events are thought to have taken place in the evolution of creatine kinases (CK) in the vertebrates - (1) the formation of distinct mitochondrial (MiCK) and cytoplasmic forms from the primordial gene and (2) subsequent formation of the sarcomeric (sar-) and ubiquitous (ubi-) isoforms of octameric MiCK and muscle (M) and brain (B) isoforms of dimeric, cytoplasmic CK. The genes of these two CK clades reflect a distant divergence as sar- and ubiMiCK genes consistently have nine protein-coding exons while M- and B-CK genes have seven protein-coding exons; these genes share only one common exon. CKs are also widely distributed in the invertebrates and it has recently been shown that MiCKs evolved well before the divergence of the major metazoan groups. In the present communication, we report the structure and topology of the gene for MiCK from the protostome marine worm Chaetopterus variopedatus. The protein-coding region of the gene for this primitive MiCK spans over 10 kb and consists of eight exons, the last five (E4-E8) have identical boundaries to the corresponding exons of sar- and ubiMiCK genes. Exon-3 of the C. variopedatus MiCK gene consists of the corresponding E3 and E4 of the vertebrate MiCKs with no intervening intron. E1 is longer and E2 is shorter in the polychaete MiCK gene than the counterpart sarcomeric and ubiquitous genes. The insertion of the intron in C. variopedatus E3 creating the two exons as well as the rearrangement of the intron between E1 and E2 must have occurred prior to or coincident with the duplication event creating the two vertebrate mitochondrial isoforms. Sarcomeric and ubiMiCKs display substantial differences from their invertebrate MiCK counterparts in properties relating to octamer stability and membrane binding. The evolutionary changes in gene topology may be a component of this functional progression.  相似文献   

2.
Secreted yeast acid phosphatase is found to be an octamer under physiological conditions rather than a dimer, as previously believed. The octameric form of the enzyme dissociates rapidly into dimers at pH below 3 and above 5, or by treatment with guanidine hydrochloride or urea, without further dissociation of dimers. Crosslinking experiments revealed that the dissociation of the octamer occurs through very unstable hexamers and tetramers, showing that the octamer is built of dimeric units. Dissociation to dimer was in all cases accompanied with a loss of most of the enzyme activity. The underglycosylated acid phosphatase, with less than eight carbohydrate chains per subunit, secreted from cells treated with moderate tunicamycin concentrations, contained besides octamers a high proportion of the dimers. With decreasing levels of enzyme glycosylation, the proportion of dimers increases and the amount of octamers correspondingly decreases. Furthermore, underglycosylated octamers were found to be significantly less stable than the fully glycosylated ones. This showed that carbohydrate chains play a significant role in the octamer formation in vivo, and in stabilization of the enzyme octameric form.  相似文献   

3.
Mitochondrial creatine kinase (MtCK) plays a central role in energy homeostasis within cells that display high and variable rates of ATP turnover. Vertebrate MtCKs exist primarily as octamers but readily dissociate into constituent dimers under a variety of circumstances. MtCK is an ancient protein that is also found in invertebrates including sponges, the most primitive of all multi-cellular animals. We have cloned, expressed, and purified one of these invertebrate MtCKs from a marine polychaete worm, Chaetopterus variopedatus (CVMtCK). Size exclusion chromatography and dynamic light scattering (DLS) were used to characterize oligomeric state in comparison with that of octameric chicken sarcomeric isoform (SarMtCK). At protein concentrations >1 mg/ml, CVMtCK was predominantly octameric (>90%). When diluted to 0.1 mg/ml, CVMtCK dissociated into dimers much more rapidly than SarMtCK when observed under identical conditions. The rate of dissociation for both MtCKs increased as temperature rose from 2 to 28 degrees C, and in CVMtCK, fell at higher incubation temperatures. The fraction of octameric CVMtCK at equilibrium increased with temperature and then fell. Temperature transition studies showed that octamers and dimers were rapidly interconvertible on a similar time scale. Importantly, when CVMtCK was converted to the transition state analog complex (TSAC), both size exclusion chromatography and DLS showed that there was minimal dissociation of octamers into dimers while SarMtCK octamers were highly unstable as the TSAC. These results clearly show distinct differences in octamer stability between CVMtCK and SarMtCK, which could impact function under physiological circumstances. Furthermore, the large yield of recombinant protein and high stability of CVMtCK in the TSAC suggest that this protein might be a good target for crystallization efforts.  相似文献   

4.
Phosphate extraction of mitochondrial creatine kinase (Mi-CK, EC 2.7.3.2) from freshly isolated intact mitochondria of chicken cardiac muscle, after short swelling in hypotonic medium, yielded more than 90% of octameric and only small amounts of dimeric Mi-CK as judged by fast protein liquid chromatography-gel permeation analysis of the supernatants immediately after extraction of the enzyme. In extraction buffer, octameric Mi-CK displayed a tendency to dissociate, albeit at a slow rate with a half-life of approximately 3-5 days, into stable dimers. Experiments with purified Mi-CK octamers or dimers, or defined mixtures thereof, incubated under identical conditions with Mi-CK-depleted mitoplasts revealed that both oligomeric forms of Mi-CK can rebind to mitoplasts. However, the association of Mi-CK was strongly pH-dependent and, in addition, octameric and dimeric Mi-CK showed different pH dependences of rebinding. Therefore, it was possible under certain pH conditions to rebind either both oligomeric forms or selectively the octamers only. Furthermore, evidence is presented that Mi-CK dimers partially form octamers upon rebinding to the inner membrane. The differential association of the two oligomeric Mi-CK forms with the inner mitochondrial membrane together with the dynamic equilibrium between octameric and dimeric Mi-CK (Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H.M., and Wallimann, T. (1988) J. Biol. Chem., 263, 16942-16953) suggest that both oligomeric forms are physiologically relevant. A change in the octamer to dimer ratio may influence the association behavior of Mi-CK in general and thus modulate mitochondrial energy flux as discussed in the phosphoryl creatine circuit model (Wallimann, T., Schnyder, T., Schlegel, J., Wyss, M., Wegmann, G., Rossi, A.-M., Hemmer, W., Eppenberger, H.M., and Quest, A.F.G. (1989) Prog. Clin. Biol. Res. 315, 159-176.  相似文献   

5.
The mitochondrial isoform of creatine kinase (Mi-CK, EC 2.7.3.2) purified to homogeneity from chicken cardiac muscle by the mild and efficient technique described in this article was greater than or equal to 99.5% pure and consisted of greater than or equal to 95% of a distinct, octameric Mi-CK protein species, with a Mr of 364,000 +/- 30,000 and an apparent subunit Mr of 42,000. The remaining 5% were dimeric Mi-CK with an apparent Mr of 86,000 +/- 8,000. Octamerization was not due to covalent linkages or intermolecular disulfide bonding. Upon dilution into buffers of low ionic strength and alkaline pH, octameric Mi-CK slowly dissociated in a time-dependent manner (weeks-months) into dimeric Mi-CK. However, the time scale of dimerization was reduced to minutes by the addition to diluted Mi-CK octamers of a mixture of Mg2+, ADP, creatine and nitrate known to induce a transition-state analogue complex (Milner-White, E.J., and Watts, D. C. (1971) Biochem. J. 122, 727-740). The conversion was fully reversible, and octamers were reformed by simple concentrations of Mi-CK dimer solutions to greater than or equal to 1 mg/ml at near neutral pH and physiological salt concentrations in the absence of adenine nucleotide. After separation of the two Mi-CK species by gel filtration, electron microscopic analysis revealed uniform square-shaped particles with a central negative-stain-filled cavity in the octamer fractions and "banana-shaped" structures in the dimer fractions. Mi-CK was localized inside the mitochondria by immunogold labeling with polyclonal antibodies. A dynamic model of the octamer-dimer equilibrium of Mi-CK and the preferential association of the octameric Mi-CK form with the inner mitochondrial membrane is discussed in the context of regulation of Mi-CK activity, mitochondrial respiration, and the CP shuttle.  相似文献   

6.
In most organisms, mitochondrial creatine kinase (MtCK) is present as dimers and octamers with the latter predominating under physiological conditions. An absolutely conserved tryptophan residue (Trp-264 in chicken sarcomeric MtCK) appears to play a key role in octamer stability. Recently, it has been shown that the sponge Tethya aurantia, a member of the most ancient group of living multi-cellular animals, expresses an obligate, dimeric MtCK that lacks this absolutely conserved tryptophan residue, instead possessing a tyrosine in this position. In the present study we confirm that the absolutely conserved tryptophan residue is lacking in other sponge MtCKs where it is instead substituted by histidine or asparagine. Site directed mutations of the Trp-264 in expression constructs of chicken sarcomeric MtCK and the octameric MtCK from the marine worm Chaetopterus destabilized the octameric quaternary structure producing only dimers. A Tyr-->Trp mutation in an expression construct of the Tethya MtCK construct failed to produce octamerization; Tyr-->His and Tyr-->Asn mutations also yielded dimers. These results, in conjunction with analysis of homology models of Chaetopterus and Tethya MtCKs, strongly support the view that while the absolutely conserved tryptophan residue is important in octamer stability, octamer formation involves a complex suite of interactions between a variety of residues.  相似文献   

7.
Creatine kinase (CK) is coded for by at least four loci in higher vertebrates--two cytoplasmic isoforms, muscle (M) and brain (B), and two mitochondrial isoforms, sarcomeric and ubiquitous. M is expressed primarily in skeletal muscle, while B is expressed in a variety of cells, including cardiac and smooth muscle fibers, neurons, transport epithelia, and photoreceptors. M and B subunits form very stable homodimers (MM [M-CK], BB [B-CK]) and heterodimers (MB). M-CK is capable of binding to the M line of the myofibril, thereby creating an energy transfer microcompartment; BB and MB CKs are not. M- and B-like CKs are present in all vertebrates yet examined, including fish. Cytoplasmic, dimeric CKs are widely distributed in the invertebrates. The only available amino acid sequence for an invertebrate dimeric CK, that of the protostome polychaete Chaetopterus variopedatus, is just as similar to the vertebrate M isoform as to the B isoform. Echinoderms lack dimeric, cytoplasmic CKs, which appear to be replaced by a dimeric arginine kinase which evolved secondarily from CK. Thus, it is likely that the gene duplication event producing the M and B isoforms occurred after the divergence of the chordates from echinoderms. To narrow down the timing of this duplication event, we obtained the cDNA and deduced amino acid sequences of dimeric CKs from the tunicate Ciona intestinalis (subphylum Urochordata) and the lancelet Branchiostoma floridae (subphylum Cephalochordata). Our results show that these CKs are strikingly similar to both invertebrate and vertebrate CKs. However, phylogenetic analyses by neighbor-joining and parsimony show that these two enzymes appeared to have diverged before the point of divergence of the M and B isoforms. Thus, the gene duplication event for formation of the muscle and brain isoforms of CK most likely occurred during the radiation of the fish, a time noted for gene duplication events at a variety of other loci.  相似文献   

8.
The recombinant amidase from the hyperthermophylic archaeon Sulfolobus solfataricus (SSAM) a signature amidase, was cloned, purified and characterized. The enzyme is active on a large number of aliphatic and aromatic amides over the temperature range 60-95 degrees C and at pH values between 4.0 and 9.5, with an optimum at pH 5.0. The recombinant enzyme is in the form of a dimer of about 110 kD that reversibly associates into an octamer in a pH-dependent reaction. The pH dependence of the state of association was studied using gel permeation chromatography, analytical ultracentrifugation and dynamic light scattering techniques. At pH 7.0 all three techniques show the presence of two species, in about equal amounts, which is compatible with the existence of a dimeric and an octameric form. In decreasing pH, the dimers formed the octameric species and in increasing pH, the octameric species was converted to dimers. Above pH 8.0, only dimers were present, below pH 3.0 only octamers were present. The association of dimers into octamers decreased in non-polar solvents and increased with temperature. A mutant (Y41C) was obtained that did not show this behavior.  相似文献   

9.
Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.  相似文献   

10.
MthK is a Ca2+-gated K+ channel from Methanobacterium autotrophicum. The crystal structure of the MthK channel in a Ca2+-bound open state was previously determined at 3.3 A and revealed an octameric gating ring composed of eight intracellular ligand-binding RCK (regulate the conductance of K+) domains. It was suggested that Ca2+ binding regulates the gating ring conformation, which in turn leads to the opening and closing of the channel. However, at 3.3 AA resolution, the molecular details of the structure are not well defined, and many of the conclusions drawn from that structure were hypothetical. Here we have presented high resolution structures of the MthK RCK domain with and without Ca2+ bound from three different crystals. These structures revealed a dimeric architecture of the RCK domain and allowed us to visualize the Ca2+ binding and protein-protein contacts at atomic detail. The dimerization of RCK domains is also conserved in other RCK-regulated K+ channels and transporters, suggesting that the RCK dimer serves as a basic unit in the gating ring assembly. A comparison of these dimer structures confirmed that the dimer interface is indeed flexible as suggested previously. However, the conformational change at the flexible interface is of an extent smaller than the previously hypothesized gating ring movement, and a reconstruction of these dimers into octamers by applying protein-protein contacts at the fixed interface did not generate enclosed gating rings. This indicated that there is a high probability that the previously defined fixed interface may not be fixed during channel gating. In addition to the structural studies, we have also carried out biochemical analyses and have shown that near physiological pH, isolated RCK domains form a stable octamer in solution, supporting the notion that the formation of octameric gating ring is a functionally relevant event in MthK gating. Additionally, our stability studies indicated that Ca2+ binding stabilizes the RCK domains in this octameric state.  相似文献   

11.
A cDNA clone of the mitochondrial sarcomeric creatine kinase cDNA was obtained by screening a rabbit heart library. This cDNA is characterized by a 1257-nucleotide open reading frame encoding a 419-amino-acid protein with a cleavable 39-amino-acid mitochondrial presequence (Accession No. AJ011334). This new member of the guanidino kinase family shows a high degree of sequence similarity with the other phosphagen kinases sequenced so far. The mature enzyme was efficiently expressed in Escherichia coli BL21(DE3) cells as a soluble octameric protein using the pET21 plasmid and purified by a three-step improved method including a final phase-transition chromatography.  相似文献   

12.
The biochemical and biophysical characterization of the mitochondrial creatine kinase (Mi-CK) from chicken cardiac muscle is reviewed with emphasis on the structure of the octameric oligomer by electron microscopy and on its membrane binding properties. Information about shape, molecular symmetry and dimensions of the Mi-CK octamer, as obtained by different sample preparation techniques in combination with image processing methods, are compared. The organization of the four dimeric subunits into the Mi-CK complex as apparent in the end-on projections is discussed and the consistently observed high binding affinity of the four-fold symmetric end-on faces towards many support films and towards each other is outlined. A study on the oligomeric state of the enzyme in solution and in intact mitochondria, using chemical crosslinking reagents, is presented together with the results of a search for a possible linkage of Mi-CK with the adenine nucleotide translocator (ANT). The nature of Mi-CK binding to model membranes, demonstrating that rather the octameric than the dimeric subspecies is involved in lipid interaction and membrane contact formation, is resumed and put into relation to our structural observations. The findings are discussed in light of a possiblein vivo function of the Mi-CK octamer bridging the gap between outer and inner mitochondrial membranes at the contact sites.  相似文献   

13.
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.  相似文献   

14.
Glutamine synthetase from ovine brain has been found to exist in vivo and in vitro as a Mn4E complex, where E is octameric enzyme [F. C. Wedler, R. B. Denman, and W. G. Roby (1982) Biochemistry 24, 6389-6396]. Previously observed anomolous effects of added metal ions and protein concentration on the observed specific activity in vitro can now be explained in terms of association-dissociation of the native octamer. In the absence of glycerol, added to stabilize the enzyme for long-term storage, activity decreases sharply below 4 micrograms/ml (20 nM octamer) in assay mixtures due to dissociation of octamer to tetramer and thence to inactive monomer. No dimeric species were detectable under any conditions. The octameric species Mn4EMn4 could be activated further by Mn(II) to form a species Mn4EMn4Mn8 that has a specific activity of ca. 900 U/mg in the transferase assay. Enzyme with one Mn(II)/subunit, Mn4EMn4, associated to octamers more extensively than Mn4E. At the low concentrations of enzyme at which the tetramer predominates, addition of substrates alone or in pairs caused partial reassociation to octamers, the most effective combinations being ATP and glutamate, ADP and L-glutamine, or ATP and L-methionine sulfoximine. Analysis of the data by the methods of Kurganov or Thomes and co-workers indicate that the tetramer/octamer equilibrium has a Kd value of ca. 2.5 X 10(-6) M, comparable to values calculated for other enzyme systems. The specific activities for octamer and monomer in the Mg(II)-dependent transferase assay were calculated to be 200 +/- 20 and 0 U/mg, respectively. Direct determination of the specific activity of pure tetramer is hampered by its substrate-promoted reassociation to octamer under assay conditions. Tetramers, produced by 2 M urea and then immobilized on CNBr-activated Sepharose 4B, exhibited a specific activity that was 86% of that of the identically treated octamers. This indicates a specific activity of ca. 172 (+/- 20) for tetramers in solution. Light-scattering experiments showed that, with 1.7-2.0 Mn(II) bound per subunit, the octameric enzyme octamers can associate further to an oligomeric species (Mn4EMn4Mn8)n, where n greater than or equal to 5. This oligomerization also was promoted strongly by lanthanide ions. Mg(II), however, caused only the association of tetramer to octamer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Adsorption to the air/water interface of isoenzymes of creatine kinase was investigated using surface pressure-area isotherms and Brewster angle microscopy (BAM) observations. Octameric mitochondrial creatine kinase (mtCK) exhibits a significant affinity for the air/water interface. Whatever the mode of formation of the interfacial film, i.e., injection of the protein in the subphase or spreading onto the buffer surface, the final arrangement and conformation adopted by mtCK molecules lead to a similar result. In contrast, the dimeric isoenzymes mtCK and cytosolic MMCK do not induce any surface pressure variation. However, when the subphase contains 0.3M NaCl, both isoenzymes adsorb to the interface. When treated with 0.8 or 3M GdnHCl, muscle creatine kinase (MMCK) becomes surface active and occupies a greater surface than mtCK. This result contrasts with previous observations, often derived from monomeric proteins, that their surface activity is increased upon unfolding. It underlines the possible influence exerted by the protein oligomeric state on its interfacial activity. At a subphase pH of 8.8, which corresponds to the pI of octameric mtCK, the profiles of the isotherms obtained with dimeric and octameric states and the resistance to compression of the protein monolayers are significantly affected when compared to those recorded at pH 7.4. These data suggest that the octamer is more hydrophobic than the dimer and may contribute to explaining why octamers bind to the inner mitochondrial membrane while dimers do not.  相似文献   

16.
Gel filtration and sedimentation studies have previously established that the vertebrate animal core histone octamer is in equilibrium with an (H3-H4)2 tetramer and an H2A-H2B dimer [Eickbush, T. H., & Moudrianakis, E. N. (1978) Biochemistry 17, 4955-4964; Godfrey, J. E., Eickbush, T. H., & Moudrianakis, E. N. (1980) Biochemistry 19, 1339-1346]. We have investigated the core histone octamer of wheat (Triticum aestivum L.) and have found it to be much more stable than its vertebrate animal counterpart. When vertebrate animal histone octamers are subjected to gel filtration in 2 M NaCl, a trailing peak of H2A-H2B dimer can be clearly resolved from the main octamer peak. When the plant octamer is subjected to the identical procedure, there is no trailing peak of H2A-H2B dimer, but rather a single peak containing the octamer. A sampling across the octamer peak from leading to trailing edge shows no change in the ratio of H2A-H2B to (H3-H4)2. Surprisingly, the plant octamer shows the same stability at 0.6 M NaCl, a salt concentration in which the vertebrate animal octamer dissociates into dimers and tetramers. Equilibrium sedimentation data indicate that the assembly potential of the wheat histones in 2 M NaCl is very high at all protein concentrations above 0.1 mg mL-1. In order to disrupt the forces stabilizing the plant histone octamer at high histone concentrations, the concentration of NaCl must be lowered to approximately 0.3 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Several cDNA clones complementary to a chicken phenobarbital-inducible cytochrome P-450 have been isolated and sequenced, representing the first non-mammalian eukaryotic cytochrome P-450 sequence to be analyzed. The cDNA clones hybridized to two mRNAs of 3.5 and 2.5 kilobases in length, but further analysis indicated that the clones were derived from the larger mRNA. The sequence contains a 5'-noncoding region of 39 nucleotides and an open reading frame of 1473 nucleotides. The remainder of the sequence is due to the 3'-noncoding region and poly(A) tail. The open reading frame encodes a protein of 491 amino acids with a molecular weight of 56,196. The chicken cytochrome P-450 shows an overall homology of 45-54% compared with the mammalian phenobarbital-induced cytochrome P-450s. The degree of homology is not uniform, with some short regions showing much greater levels of sequence conservation. In particular, the chicken cytochrome P-450 contains the conserved cysteinyl domain near the carboxyl terminus, found in all cytochrome P-450s and which is thought to be involved in heme binding. Using the chicken sequence, a more accurate estimate of the evolutionary rates of cytochrome P-450s has been made. It is suggested that the phenobarbital-, 3-methylcholanthrene, and pregnenolone 16 alpha-carbonitrile-induced cytochrome P-450 gene families diverged from a common ancestral gene 600 million years ago. Furthermore the phenobarbital-inducible gene apparently underwent gene duplication events at about the time of the divergence of the chicken and mammalian lineages. The results imply that most mammals should have at least four rather distantly related phenobarbital-inducible gene subfamilies.  相似文献   

18.
VP40 octamers are essential for Ebola virus replication   总被引:2,自引:0,他引:2       下载免费PDF全文
Matrix protein VP40 of Ebola virus is essential for virus assembly and budding. Monomeric VP40 can oligomerize in vitro into RNA binding octamers, and the crystal structure of octameric VP40 has revealed that residues Phe125 and Arg134 are the most important residues for the coordination of a short single-stranded RNA. Here we show that full-length wild-type VP40 octamers bind RNA upon HEK 293 cell expression. While the Phe125-to-Ala mutation resulted in reduced RNA binding, the Arg134-to-Ala mutation completely abolished RNA binding and thus octamer formation. The absence of octamer formation, however, does not affect virus-like particle (VLP) formation, as the VLPs generated from the expression of wild-type VP40 and mutated VP40 in HEK 293 cells showed similar morphology and abundance and no significant difference in size. These results strongly indicate that octameric VP40 is dispensable for VLP formation. The cellular localization of mutant VP40 was different from that of wild-type VP40. While wild-type VP40 was present in small patches predominantly at the plasma membrane, the octamer-negative mutants were found in larger aggregates at the periphery of the cell and in the perinuclear region. We next introduced the Arg134-to-Ala and/or the Phe125-to-Ala mutation into the Ebola virus genome. Recombinant wild-type virus and virus expressing the VP40 Phe125-to-Ala mutation were both rescued. In contrast, no recombinant virus expressing the VP40 Arg134-to-Ala mutation could be recovered. These results suggest that RNA binding of VP40 and therefore octamer formation are essential for the Ebola virus life cycle.  相似文献   

19.
A gene encoding the precursor for a novel member of the human acyl-CoA dehydrogenase (ACD) gene family has been isolated which maps to human chromosome 11q25. The cDNA contains an open reading frame of 1248 nucleotides encoding a predicted 415-amino-acid peptide, and shares considerable sequence similarity with other members of the ACD family.  相似文献   

20.
We purified a new EF-hand type calcium binding protein from chicken gizzard smooth muscle, tentatively named calgizzarin (Todoroki, H., et al. J. Biol. Chem. (1991) in press. Based on the internal peptide sequence of calgizzarin, we isolated and sequenced a cDNA clone coding for calgizzarin from a rabbit lung cDNA library. This clone (pCALG) has 309 nucleotides of open reading frame including termination codon TGA, 621 nucleotides of the 5' leader and 186 nucleotides of the 3' noncoding region. The polypeptides deduced from the open reading frame were consisted of 102 amino acid residues with a molecular weight of 11,429. Computer aided homology analysis revealed that calgizzarin exhibits a 43.2% homology to S-100 alpha, 38.6% to S-100 beta and 40.0% to annexin II light chain, p10. By Northern blot analysis, with pCALG, a band of 1.1 kbp was detected in rabbit lung, suggesting pCALG contains nearly full length of mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号