首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The endoplasmic reticulum and the unfolded protein response   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases.  相似文献   

4.
5.
The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.  相似文献   

6.
7.
Signal integration in the endoplasmic reticulum unfolded protein response   总被引:16,自引:0,他引:16  
The endoplasmic reticulum (ER) responds to the accumulation of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways - cumulatively called the unfolded protein response (UPR). Together, at least three mechanistically distinct arms of the UPR regulate the expression of numerous genes that function within the secretory pathway but also affect broad aspects of cell fate and the metabolism of proteins, amino acids and lipids. The arms of the UPR are integrated to provide a response that remodels the secretory apparatus and aligns cellular physiology to the demands imposed by ER stress.  相似文献   

8.
Stress in mitochondria or the endoplasmic reticulum (ER) independently causes cell death. Recently, it was reported that ER stress causes mitochondrial dysfunction via p53-upregulated modulator of apoptosis (PUMA). However, little is known regarding the mitochondria molecules that mediate ER dysfunction. The present study revealed that tumor necrosis factor receptor-associated protein 1 (TRAP1), which localizes in the mitochondria, is associated with the unfolded protein response (UPR) in the ER. TRAP1 knockdown activated the ER-resident caspase-4, which is activated by ER stress, to induce cell death in humans. However, TRAP1 knockdown cells did not show a significant increase in the level of cell death at least within 24 h after early phase of ER stress in comparison with that of the control cells. This finding could be attributed to a number of reasons. TRAP1 knockdown failed to activate caspase-9, which is activated by activated caspase-4. In addition, TRAP1 knockdown increased the basal level of GRP78/BiP expression, which protects cells, and decreased the basal level of C/EBP homologous protein (CHOP) expression, which induces cell death, even under ER stress. Thus, the present study revealed that mitochondria could be a potential regulator of the UPR in the ER through mitochondrial TRAP1.  相似文献   

9.
10.
《Molecular cell》2022,82(8):1477-1491
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
13.
14.
Cells constantly adjust the sizes and shapes of their organelles according to need. In this study, we examine endoplasmic reticulum (ER) membrane expansion during the unfolded protein response (UPR) in the yeast Saccharomyces cerevisiae. We find that membrane expansion occurs through the generation of ER sheets, requires UPR signaling, and is driven by lipid biosynthesis. Uncoupling ER size control and the UPR reveals that membrane expansion alleviates ER stress independently of an increase in ER chaperone levels. Converting the sheets of the expanded ER into tubules by reticulon overexpression does not affect the ability of cells to cope with ER stress, showing that ER size rather than shape is the key factor. Thus, increasing ER size through membrane synthesis is an integral yet distinct part of the cellular program to overcome ER stress.  相似文献   

15.
16.
In addition to serving as the entry point for newly translated polypeptides making their way through the secretory pathway, the endoplasmic reticulum (ER) also synthesizes many lipid components of the entire endomembrane system. A report published in this issue implicates a signaling pathway known to respond to ER unfolded protein load in the control of phospholipid biosynthesis by the organelle (Sriburi et al., 2004). The reasonable notion that demand for ER membrane is integrated with protein processing capacity was initially suggested by genetic analysis of yeast. The new data lend direct support for this idea and imply interesting mechanistic possibilities for how this coupling develops.  相似文献   

17.
18.
Brain trauma was induced in mice using a closed head injury (CHI) model. At 1, 6 or 24 h after trauma, brains were dissected into the cortex, striatum and hippocampus. Changes in levels of processed X-box protein 1 (xbp1), glucose-regulated protein 78 (grp78), growth arrest and DNA damage-inducible gene 153 (gadd153) and heat-shock protein 70 (hsp70) mRNA, indicating impaired endoplasmic reticulum (ER) and cytoplasmic functioning, were evaluated by quantitative PCR. In the cortex, processed xbp1 mRNA levels rose to 2000% of control 1 h after CHI, and stayed high throughout the experiments. In the hippocampus and striatum, processed xbp1 mRNA levels rose in a delayed fashion, peaking at 6 h (1000% of control) and 24 h after CHI (1500% of control) respectively. Levels of grp78 mRNA were only slightly increased in the cortex 24 h after CHI (150% of control), and were unchanged or transiently decreased in the hippocampus and striatum. Levels of gadd153 mRNA did not change significantly after trauma. A transient rise in hsp70 mRNA levels was observed only in the cortex, peaking at 1 h after CHI (600% of control). Processing of xbp1 mRNA is a sign of activation of the unfolded protein response indicative of ER dysfunction. The results suggest that brain trauma induces ER dysfunction, which spreads from the ipsilateral cortex to the hippocampus and striatum. These observations may have clinical implications and should therefore be considered for future investigations on therapeutic intervention of brain injury caused by contusion-induced neurotrauma.  相似文献   

19.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate the majority of excitatory signaling in the CNS, and the functional properties and subcellular fate of these receptors depend on receptor subunit composition. Subunit assembly is thought to occur in the endoplasmic reticulum (ER), although we are just beginning to understand the underlying mechanism. Here we examine the trafficking of Caenorhabditis elegans glutamate receptors through the ER. Our data indicate that neurons require signaling by the unfolded protein response (UPR) to move GLR-1, GLR-2, and GLR-5 subunits out of the ER and through the secretory pathway. In contrast, other neuronal transmembrane proteins do not require UPR signaling for ER exit. The requirement for the UPR pathway is cell type and age dependent: impairment for receptor trafficking increases as animals age and does not occur in all neurons. Expression of XBP-1, a component of the UPR pathway, is elevated in neurons during development. Our results suggest that UPR signaling is a critical step in neural function that is needed for glutamate receptor assembly and secretion.  相似文献   

20.
Eukaryotic cells respond to the accumulation of unfolded proteins in the endoplasmic reticulum (ER) either by unfolded protein response that leads to an increase in the capacity of the ER to fold its client proteins or by apoptosis when the function of ER cannot be restored. Emerging data now indicate that ER stress is also a potent inducer of macroautophagy, a process whereby eukaryotic cells recycle their macromolecules and organelles. Depending on the context, autophagy counterbalances ER stress-induced ER expansion, enhances cell survival or commits the cell to non-apoptotic death. Here, we discuss the signaling pathways linking ER stress to autophagy and possibilities for their clinical exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号