首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The glutamine-dependent activity of Serratia marcescens anthranilate synthase was inactivated by pyridoxal 5′-phosphate and sodium cyanide. The reaction was specific in that the ammonia-dependent activity of the enzyme was unaffected. The inactivation was stable to dilution or dialysis but was reversed by dithiothreitol. The enzyme contains dissimilar subunits designated anthranilate synthase components I (AS I) and II (AS II). Incorporation of [14C]NaCN demonstrates that modification was limited to one to two residues per AS I · AS II protomer. An active site cysteine is involved in the glutamine-dependent activity. Modification by pyridoxal 5′-phosphate and NaCN blocked affinity labeling of the active site cysteine by the glutamine analog 6-diazo-5-oxo-l-norleucine and reduced alkylation of the active site cysteine by iodoacetamide. These results suggest modification is at the glutamine active site. Initial modification by iodoacetamide did not prevent pyridoxal 5′-phosphate-dependent incorporation of 14CN showing that the pyridoxal 5′-phosphate modification did not involve the essential cysteinyl residue. These results suggest that modification of a lysyl residue in the glutamine active site of anthranilate synthase reduces the reactivity of the essential cysteinyl residue resulting in the loss of the amidotransferase activity.  相似文献   

2.
3-O-Immobilized and 6-immobilized pyridoxal 5′-phosphate analogs of Sepharose were bound to the allosteric site of nucleoside diphosphatase with very high affinity. Active immobilized nucleoside diphosphatase was prepared by reduction of the Schiff base linkage between the enzyme and pyridoxal 5′-phosphate bound to Sepharose with NaBH4. 3-O-Immobilized pyridoxal 5′-phosphate analog gave more active immobilized enzyme than the 6-analog; the immobilized enzyme on the 3-O-immobilized pyridoxal 5′-phosphate analog showed about 90% of activity of free enzyme. The immobilized enzyme thus prepared was less sensitive to ATP, an allosteric effector, and showed a higher heat stability than the free enzyme. When an assay mixture containing inosine diphosphate and MgCl2 was passed through a column of the immobilized enzyme at 37 °C, inosine diphosphate liberated inorganic phosphate almost quantitatively. Properties of the immobilized enzyme on the pyridoxal 5′-phosphate analog were compared with those of the immobilized enzyme on CNBr-activated Sepharose.  相似文献   

3.
An assay for determining the concentration of pyridoxal 5′-phosphate in plasma from 0.4 ml whole blood is reported. The assay consists of incubating deproteinized plasma with d-serine apodehydratase from Escherichia coli in 0.5 mN-2-hydroxyethyl-piperazine-N′-3-propanesulfonic acid, pH 7.8, at 37°C for 15 min, and then determining the d-serine dehydratase activity of an aliquot of the incubation mixture. A lactic dehydrogenase-coupled assay (at 25°C) was used to measure the rate of enzymically catalyzed conversion of D-serine to pyruvate, wherein depletion of NADH was followed continuously at 340 nm. The concentration of pyridoxal 5′-phosphate in the plasma sample was estimated from the enzymic activity which is a linear function of the amount of pyridoxal 5′-phosphate present in the assay.  相似文献   

4.
The affinity of progesterone receptor from hen oviduct for ATP-Sepharose was diminished by preincubation with pyridoxal 5′-phosphate. This effect was specific for pyridoxal 5′-phosphate since the related compounds, pyridoxal, pyridoxine, pyridoxamine and pyridoxamine 5′-phosphate, were not effectors. The inactivation was easily reversed by the addition of the primary amine, Tris. However, in the presence of the reducing agent NaBH4, the inhibitory effect of pyridoxal 5′-phosphate was irreversible. The results suggest that pyridoxal 5′-phosphate forms a Schiff base with a critical amino group, presumably at the nucleotide binding site of the progesterone receptor.  相似文献   

5.
In the present study a cell culture system was used to correlate the intracellular levels of pyridoxal 5′-phosphate with the induction of the hepatic enzyme, tyrosine aminotransferase, by glucocorticoids. Increased intracellular levels of pyridoxal 5′-phosphate produced antiglucocorticoid effects whereas a reduction in pyridoxal 5′-phosphate content increased the sensitivity of cells to glucocorticoids. The data strongly implicate pyridoxal 5′-phosphate as an invivo modulator of the glucocorticoid receptor. The mechanism by which pyridoxal 5′-phosphate modulates the receptor is presumably through its binding to the DNA-binding site of the “activated” form of the receptor complex.  相似文献   

6.
Regulation of pyridoxal 5'-phosphate metabolism in liver   总被引:4,自引:0,他引:4  
The pyridoxal 5′-phosphate content of liver in vivo and of hepatocytes in vitro remains unaltered in the presence of excess unphosphorylated vitamin B6 precursors. Studies with isolated hepatocytes and subcellular fractions show that while product inhibition of pyridoxine phosphate oxidase does not limit synthesis sufficiently to account for the phenomenon, inhibition of phosphatase activity produces striking increases in pyridoxal 5′-phosphate concentration. Protein-binding protects it against degradation by the phosphatase. The data suggest that protein-binding and the enzymatic hydrolysis of pyridoxal 5′-phosphate, synthesized in excess, act jointly to preserve the constancy of the cellular content of this coenzyme.  相似文献   

7.
The relationship between the susceptibility to convulsions, the content of pyridoxal 5′-phosphate and the activity of pyridoxal kinase (EC 2.7.1.35) and glutamate decarboxylase (EC 4.1.1.15) in brain, was studied in the developing mouse. Seizures were induced by pyridoxal phosphate-σ-glutamyl hydrazone (PLPGH), a drug previously reported to reduce the levels of pyridoxal 5′-phosphate and as a consequence to inhibit the activity of glutamate decarboxylase in brain of adult mice. It was found that the seizure pattern, as well as the time of appearance of convulsions, differed between 2- and 5-day old mice and 10-day old or older mice, indicating a progressive increase in seizure susceptibility during development. In brain, pyridoxal kinase activity and pyridoxal 5′-phosphate levels were decreased by the administration of PLPGH at all ages studied, whereas glutamate decarboxylase activity was inhibited less than 25% in 2- and 5-day old mice, and about 50% thereafter. Parallelly, the activation of glutamate decarboxylase by pyridoxal 5′-phosphate added in vitro to control homogenates was less in 2- and 5-day old mice than in older animals. It is concluded that the increase in the susceptibility to seizures induced by PLPGH during development is probably related to the increase observed in the sensitivity of glutamate decarboxylase in vivo to a decrease of pyridoxal 5′-phosphate levels. The correlation between pyridoxal 5′-phosphate, glutamate decarboxylase, and seizure susceptibility seems to be established at about 10 days of age.  相似文献   

8.
A new fluorometric method using semicarbazide for the determination of pyridoxal and pyridoxal 5′-phosphate (PLP) in whole blood, red cells and plasma has been developed. Semicarbazide breaks the Schiff base of PLP and proteins by “trans-Schiffization” reaction and forms semicarbazone of PLP. The semicarbazone of PLP emits strongly at 460 nm when excited at 380 nm. Several metabolic intermediates were tested for the possible interference. Only pyridoxal was found to interfere. The interference can be corrected since pyridoxal emits at 380 nm when excited at 320 nm. Using this method we found that rabbit red cells in vivo are freely permeable to PLP.  相似文献   

9.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli was reversibly inactivated by pyridoxal 5′-phosphate. The residual activity of the enzyme was dependent on the concentration of the modifying reagent to a concentration of 5 mm. The maximum level of inactivation was 89%. Kinetic and equilibrium analyses of inactivation were consistent with a two-step process (Chen and Engel, 1975, Biochem. J.149, 619) in which the extent of inactivation was limited by the ratio of first-order rate constants for the reversible formation of an inactive Schiff base of pyridoxal 5′-phosphate and the enzyme from a noncovalent, dissociable complex of the enzyme and modifier. The calculated minimum residual activity was in close agreement with the experimentally determined value. The conclusion that the loss of catalytic activity resulted from modification of a lysine residue at the active site was based on the following data, (a) After incubation with 5 mm pyridoxal 5′-phosphate, 3.95 mol of the reagent was incorporated per mole of free enzyme with 89% loss of activity, while 2.75 mol of pyridoxal 5′-phosphate was incorporated into the enzyme-CoA intermediate with a loss of 10% of catalytic activity; the intermediate was formed in the presence of acetoacetyl-CoA; (b) acid hydrolysis of the modified, reduced enzyme-CoA intermediate yielded a single fluorescent compound that was identified as N6-pyridoxyllysine by chromatography in two solvent systems; (c) the enzyme was also protected from inactivation by saturating concentrations of free CoA and ADP but not by adenosine. The results suggested that a lysine residue is involved in the electrostatic binding of the pyrophosphate group of CoA. Carboxylic acid substrate did not protect the enzyme from inactivation.  相似文献   

10.
The inactivation of E. coli RNA polymerase (3.3 × 10?7M) by pyridoxal 5′-phosphate (1 × 10?4M to 5 × 10?4M) is a first order process with respect to the remaining active enzyme. Studies of the variation of the first order rate constant with the concentration of pyridoxal 5′-phosphate show that the inactivation reaction follows saturation kinetics. The formation of a reversible enzyme-inhibitor intermediate is postulated. Kinetic studies at different pH values indicate that the inactivation rate constant depends on the mole fraction of one conjugate base with pKa 7.9. The apparent equilibrium constant (association) for the inactivation reaction is independent of the pH and is 1.8 × 104 M?1. By electrophoretic and chromatographic analysis of enzyme hydrolyzates after pyridoxal 5′-phosphate and NaBH4 treatment only N-ε-pyridoxyllysine was found. It is postulated that a lysine ε-amino group with a low pKa is critical for the activity of the enzyme.  相似文献   

11.
Rabbit muscle glycogen phosphorylase (EC 2.4.1.1) was reconstituted with pyridoxal 5′-methylenephosphonate with ca. 25% restoration of enzymatic activity. The modified enzyme has very similar chemical and physical properties to native phosphorylase including UV and fluorescence spectra, quaternary structure, high energy of activation in the reconstitution reaction, optimum pH and susceptibility to phosphorylase kinase in the b to a conversion. While Vmax is reduced to ca. one-fifth, affinities for the substrate glucose 1-P and the effector AMP are increased. This is the first analog of pyridoxal 5′-P modified in the 5′-position found to restore catalytic activity to apophosphorylase.  相似文献   

12.
The β2 subunit of tryptophan synthetase of Escherichia coli is photoinactivated in the presence of pyridoxal 5′-phosphate and L-serine as a result of the destruction of one histidyl residue per chain (1). Two tryptic peptides are found in much lower amounts in the photoinactivated enzyme than in the control enzyme. These peptides have been identified from their amino acid composition as the 9 or 10 residue peptides which terminate with the lysyl residue which forms a Schiff base with pyridoxal 5′-phosphate. These peptides contain two histidyl residues, one of which appears to be photosensitive. Thus pyridoxal 5′-phosphate sensitizes the photooxidation of a nearby, essential histidyl residue.  相似文献   

13.
14.
Lysyl oxidase: evidence that pyridoxal phosphate is a cofactor   总被引:5,自引:0,他引:5  
Both crude and partially purified preparations of embryonic chick aortic lysyl oxidase tend to gradually lose enzymic activity when illuminated, or when urea is removed by dialysis. Full activity is restored to such preparations by dialysis versus low concentrations of pyridoxal 5′-phosphate prior to assay. Upon treatment with potassium cyanide or semicarbazide, purified embryonic chick aortic lysyl oxidase gives rise to fluorescent derivatives. The fluorescence spectrum of the semicarbazide adduct closely resembles that of pyridoxal phosphate semicarbazone. A preliminary ultraviolet/visible spectrum of bovine aortic lysyl oxidase is also presented; this shows features which add to the existing evidence that lysyl oxidase contains an essential pyridoxal phosphate cofactor.  相似文献   

15.
Starch phosphorylase from tapioca leaves has been purified to homogeneity, using the technique of ammonium sulfate fractionation, heat treatment, DEAE-cellulose chromatography, filtration through Sephadex G-100 and Sephadex G-200, and DEAE-Sephadex chromatography. The enzyme has a molecular weight of 450,000, as determined by gel filtration through Sephadex G-200 and contains 22 sulfhydryl groups per mole of the enzyme protein. Several types of evidence indicate the absence of pyridoxal 5′-phosphate as a prosthetic group of the enzyme. The kinetic data show a sequential type of the reaction mechanism. The enzyme activity is inhibited by tyrosine (Ki = 2.15 mm).  相似文献   

16.
The interaction of pyridoxal 5-phosphate with beef liver serine hydroxymethyltransferase (5,10-methylenetetrahydrofolate:glycine hydroxymethyltransferase, EC 2.1.2.1) has been investigated using sedimentation velocity, kinetic and equilibrium techniques. No evidence for an aggregating system could be found in sedimentation velocity experiments in the presence or absence of pyridoxal 5-phosphate. Reassociation of pyridoxal 5-phosphate with apoenzyme and reacquisition of enzymic activity follow identical kinetics. An initial fast step is followed by a second order process with a rate constant of 66 M-1. s-1. A dissociation constant of 27.5 micrometer was obtained from equilibrium studies. No interaction of binding sites was exposed by altering pH or in the presence of glycine or folate. Maxima observed in pH profiles with both binding and reactivation are interpreted as the composite fo two overlapping processes, one of which is ionization of the pyridinium nitrogen of pyridoxal 5-phosphate and the other a functional group on the apoenzyme. Evidence is presented to indicate the necessity for the formation of an enzyme . pyridoxal 5-phosphate Schiff's base complex during catalytic turnover.  相似文献   

17.
Two types of new Sepharose-bound pyridoxal 5′-phosphate, N-immobilized and 3-0-immobilized pyridoxal 5′-phosphate analogues, were prepared by reacting pyridoxal 5′-phosphate with a bromoacetyl derivative of Sepharose 4B in dimethylformamide (50% v/v) and in potassium phosphate buffer (pH 6.0) for approx. 70 h at room temperature in the dark, respectively. The properties of these immobilized pyridoxal 5′-phosphate derivatives including their catalytic activities in the non-enzymatic cleavage reaction of tryptophan were studied in comparison with those of the 6-immobilized pyridoxal 5′-phosphate analogue reported previously by the present authors. The usefulness of these pyridoxal 5′-phosphate analogues in the preparation of immobilized tryptophanase was demonstrated.  相似文献   

18.
The rat liver glucocorticoid receptor has been eluted from DNA-cellulose with pyridoxal 5′-phosphate at low ionic strength. This elution is concentration dependent with 80–90% of the receptor eluted in 30 rain at 0 °C when the concentration of pyridoxal 5′-phosphate is 10 mm. This elution is specific for the 4′-aldehyde group of pyridoxal 5′-phosphate since vitamin B6 analogs lacking this group are inactive in eluting the steroid-receptor complex from DNA-cellulose. Receptor has also been eluted from rat liver nuclei with similar results. The receptor eluted with pyridoxal 5′-phosphate has been compared with the receptor eluted with 0.45 m NaCl. Both methods of elution yield a steroid-receptor complex which sediments at about 3.7 S. The pyridoxal 5′-phosphate-eluted receptor however, is less prone to aggregation at low ionic strength and more stable with respect to steroid binding than the 0.45 m NaCl-eluted steroid-receptor complex. The complement of proteins eluted from DNA-cellulose with pyridoxal 5′-phosphate is very similar to that eluted with NaCl as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

19.
An easy spectrophotometric method was developed to quantify compounds having an ONH2 (amino-oxy) function (e.g., hydroxylamine, canaline, O-aminoserine, and amino-oxy acetic acid). Stoichiometric reactions occur, in practice, between the amino-oxy compounds and the aldehydic group of pyridoxal 5′-phosphate in aqueous solution. When the reaction had reached equilibrium the concomitant decrease in absorption at 405 nm was used as the measure of the amino-oxy functions. Thus it is possible to determine amino-oxy compounds at about the same concentration as pyridoxal 5′-phosphate can be measured spectrophotometrically. The present method was applied to follow the enzymic hydrolysis of canavanine to canaline. Based on the measured apparent kinetic constants, a specific way to determine hydroxylamine among its O-alkylethers was advised, as well.  相似文献   

20.
Abstract

2-Acetyl-4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)imidazole (THI) is observed as a minor contaminant in caramel food colourings (E?150c). Feeding experiments with rodents have revealed a significant lymphopenic effect that has been linked to the presence of THI in these food colourings. Pyridoxal kinase inhibition by THI has been suggested, but not demonstrated, as a mode of action as it leads to lowered levels of pyridoxal-5′-phosphate, which are known to cause lymphopenia. Recently, THI was also shown to inhibit sphingosine-1-phosphate lyase causing comparable immunosuppressive effects and derivatives of THI are being developed for the treatment of rheumatoid arthritis in humans. Interestingly, sphingosine-1-phosphate lyase activity depends on pyridoxal-5′-phosphate, which in turn is provided by pyridoxal kinase. This report shows that THI does inhibit pyridoxal kinase with competitive and mixed-type non-competitive behaviour towards its two substrates, pyridoxal and ATP, respectively. The corresponding inhibition constants are in the low millimolar range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号