首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sorting nexin 1 (SNX1) and SNX2 are the mammalian homologues of the yeast Vps5p retromer component that functions in endosome-to-Golgi trafficking. SNX1 is also implicated in endosome-to-lysosome sorting of cell surface receptors, although its requirement in this process remains to be determined. To assess SNX1 function in endocytic sorting of protease-activated receptor-1 (PAR1), we used siRNA to deplete HeLa cells of endogenous SNX1 protein. PAR1, a G-protein-coupled receptor, is proteolytically activated by thrombin, internalized, sorted predominantly to lysosomes, and efficiently degraded. Strikingly, depletion of endogenous SNX1 by siRNA markedly inhibited agonist-induced PAR1 degradation, whereas expression of a SNX1 siRNA-resistant mutant protein restored agonist-promoted PAR1 degradation in cells lacking endogenous SNX1, indicating that SNX1 is necessary for lysosomal degradation of PAR1. SNX1 is known to interact with components of the mammalian retromer complex and Hrs, an early endosomal membrane-associated protein. However, activated PAR1 degradation was not affected in cells depleted of retromer Vps26/Vps35 subunits, Hrs or Tsg101, an Hrs-interacting protein. We further show that SNX2, which dimerizes with SNX1, is not essential for lysosomal sorting of PAR1, but rather can regulate PAR1 degradation by disrupting endosomal localization of endogenous SNX1 when ectopically expressed. Together, our findings establish an essential role for endogenous SNX1 in sorting activated PAR1 to a distinct lysosomal degradative pathway that is independent of retromer, Hrs, and Tsg101.  相似文献   

2.
Sorting nexin 1 (SNX1) and SNX2, homologues of the yeast vacuolar protein-sorting (Vps)5p, contain a phospholipid-binding motif termed the phox homology (PX) domain and a carboxyl terminal coiled-coil region. A role for SNX1 in trafficking of cell surface receptors from endosomes to lysosomes has been proposed; however, the function of SNX2 remains unknown. Toward understanding the function of SNX2, we first examined the distribution of endogenous protein in HeLa cells. We show that SNX2 resides primarily in early endosomes, whereas SNX1 is found partially in early endosomes and in tubulovesicular-like structures distributed throughout the cytoplasm. We also demonstrate that SNX1 interacts with the mammalian retromer complex through its amino terminal domain, whereas SNX2 does not. Moreover, activated endogenous epidermal growth factor receptor (EGFR) colocalizes markedly with SNX2-positive endosomes, but minimally with SNX1-containing vesicles. To assess SNX2 function, we examined the effect of a PX domain-mutated SNX2 that is defective in vesicle localization on EGFR trafficking. Mutant SNX2 markedly inhibited agonist-induced EGFR degradation, whereas internalization remained intact. In contrast, SNX1 PX domain mutants failed to effect EGFR degradation, whereas a SNX1 deletion mutant significantly inhibited receptor down-regulation. Interestingly, knockdown of SNX1 and SNX2 expression by RNA interference failed to alter agonist-induced EGFR down-regulation. Together, these findings suggest that both SNX1 and SNX2 are involved in regulating lysosomal sorting of internalized EGFR, but neither protein is essential for this process. These studies are the first to demonstrate a function for SNX2 in protein trafficking.  相似文献   

3.
Huntingtin-associated protein 1 (HAP1) is a novel protein of unknown function with a higher binding affinity for the mutant form of Huntington's disease protein huntingtin. Here we report that HAP1 interacts with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a mammalian homologue of yeast vacuolar protein sorting protein Vps27p involved in the endosome-to-lysosome trafficking. This novel interaction was identified in a yeast two-hybrid screen using full-length Hrs as bait, and confirmed by in vitro binding assays and co-immunoprecipitation experiments. Deletion analysis reveals that the association of HAP1 with Hrs is mediated via a coiled-coil interaction between the central coiled-coil domains of both proteins. Immunofluorescence and subcellular fractionation studies show that HAP1 co-localizes with Hrs on early endosomes. Like Hrs, overexpression of HAP1 causes the formation of enlarged early endosomes, and inhibits the degradation of internalized epidermal growth factor receptors. Whereas overexpression of HAP1 does not affect either constitutive or ligand-induced receptor-mediated endocytosis, it potently blocks the trafficking of endocytosed epidermal growth factor receptors from early endosomes to late endosomes. These findings implicate, for the first time, the involvement of HAP1 in the regulation of vesicular trafficking from early endosomes to the late endocytic compartments.  相似文献   

4.
The STAM family proteins, STAM1 and STAM2/EAST/Hbp, are phosphotyrosine proteins that contain SH3 domains and ubiquitin-interacting motifs. Their yeast homologue, Hse1, and its binding protein, Vps27, are involved in the vacuolar membrane transport machinery. Here we show that STAM1 and STAM2 are localized to the endosomal membrane. Some of these complexes contain Eps15, an endocytic protein, which accumulates in clumps upon expression of a dominant-negative form of Vps4-A, an AAA-type ATPase, that is required for normal endosome function. These results support the idea that the STAMs are mammalian vacuolar protein sorting (Vps) proteins. We also demonstrate that ligand-mediated epidermal growth factor receptor (EGFR) degradation is partially but not completely impaired in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) mouse embryonic fibroblasts. Furthermore, endosome swelling is seen in both Hrs(-/-) and STAM1(-/-)STAM2(-/-) cells. These results suggest that the STAMs and Hrs play important roles in the mammalian endosomal/vacuolar protein sorting pathway.  相似文献   

5.
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans -Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes–TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069–7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.  相似文献   

6.
Many signaling receptors require covalent modification by ubiquitin for agonist-induced down-regulation via endocytic trafficking to lysosomes, a process that is mediated by a conserved set of endosome-associating proteins also required for vacuolar protein-sorting (VPS) in yeast. The delta opioid receptor (DOR) is a G protein-coupled receptor that can undergo agonist-induced proteolysis via endocytic trafficking to lysosomes but does not require covalent modification by ubiquitin to do so. This raises the question of whether lysosomal down-regulation of this "ubiquitination-independent" GPCR is mediated by a completely distinct biochemical mechanism or if similar VPS machinery is involved. Agonist-induced proteolysis of DOR was significantly inhibited by dominant negative mutant versions of Vps4/Skd1, an AAA-family ATPase required for a late step in lysosomal sorting of ubiquitinated membrane cargo. Furthermore, overexpression and interfering RNA-mediated knockdown indicated that lysosomal trafficking of opioid receptors is also dependent on Hrs, a VPS protein that mediates an early step in lysosomal sorting of ubiquitinated cargo. However, interfering RNA-mediated knockdown of Tsg101, a VPS protein that is essential for an intermediate step of the conserved lysosomal sorting mechanism, did not detectably affect agonist-induced proteolysis of DOR in the same cells in which (ubiquitination-dependent) lysosomal trafficking of epidermal growth factor receptors was clearly inhibited. These results indicate that opioid receptors, despite their ability to undergo efficient agonist-induced trafficking to lysosomes in the absence of covalent modification by ubiquitin, utilize some (Vps4 and Hrs) but perhaps not all (Tsg101) of the VPS machinery required for lysosomal sorting of ubiquitinated membrane cargo.  相似文献   

7.
The mammalian tumor susceptibility gene tsg101 encodes the homologue of Vps23p, a class E Vps protein essential for normal membrane trafficking in the late endosome/multivesicular body of yeast. Both proteins assemble into large (∼350 kDa) cytosolic protein complexes and we show that the yeast complex contains another class E Vps protein, Vps28p. tsg101 mutant cells exhibit defects in sorting and proteolytic maturation of the lysosomal hydrolase cathepsin D, as well as in the steady-state distribution of the mannose-6-phosphate receptor. Additionally, endocytosed EGF receptors that are normally sorted to the lysosome are instead rapidly recycled back to the cell surface in tsg101 mutant cells. We propose that tsg101 mutant cells are defective in the delivery of cargo proteins to late endosomal compartments. One consequence of this endosomal trafficking defect is the delayed down-regulation/degradation of activated cell surface receptors, resulting in prolonged signaling. This may contribute to the tumorigenic phenotype exhibited by the tsg101 mutant fibroblasts.  相似文献   

8.
Yeast Vps10p is a receptor for transport of the soluble vacuolar hydrolase carboxypeptidase Y to the lysosome-like vacuole. Its functional equivalents in mammalian cells are the mannose 6-phosphate receptors that mediate sorting to lysosomes of mannose 6-phosphate-containing lysosomal proteins. A chimeric receptor was constructed by substituting the cytoplasmic domain of M(r) 300,000 mannose 6-phosphate receptor with the Vps10p cytoplasmic tail. Expression of the chimera in cells lacking endogenous mannose 6-phosphate receptors resulted in a subcellular receptor distribution and an efficiency in sorting of lysosomal enzymes similar to that of the wild type M(r) 300,000 mannose 6-phosphate receptor. Moreover, the cytoplasmic tail of the Vps10p was found to interact with GGA1 and GGA2, two mammalian members of a recently discovered family of clathrin-binding cytosolic proteins that participate in trans-Golgi network-endosome trafficking in both mammals and yeast. Our findings suggest a conserved machinery for Golgi-endosome/vacuole sorting and may serve as a model for future studies of yeast proteins.  相似文献   

9.
Lysosomal degradation is essential for the termination of EGF‐stimulated EGF receptor (EGFR) signaling. This requires EGFR sorting to the intraluminal vesicles (ILVs) of multi‐vesicular endosomes (MVEs). Cytosolic proteins including the ESCRT machineries are key regulators of EGFR intraluminal sorting, but roles for endosomal transmembrane proteins in receptor sorting are poorly defined. Here, we show that LAPTM4B, an endosomal transmembrane oncoprotein, inhibits EGF‐induced EGFR intraluminal sorting and lysosomal degradation, leading to enhanced and prolonged EGFR signaling. LAPTM4B blocks EGFR sorting by promoting ubiquitination of Hrs (an ESCRT‐0 subunit), which inhibits the Hrs association with ubiquitinated EGFR. This is counteracted by the endosomal PIP kinase, PIPKIγi5, which directly binds LAPTM4B and neutralizes the inhibitory function of LAPTM4B in EGFR sorting by generating PtdIns(4,5)P2 and recruiting SNX5. PtdIns(4,5)P2 and SNX5 function together to protect Hrs from ubiquitination, thereby promoting EGFR intraluminal sorting. These results reveal an essential layer of EGFR trafficking regulated by LAPTM4B, PtdIns(4,5)P2 signaling, and the ESCRT complex and define a mechanism by which the oncoprotein LAPTM4B can transform cells and promote tumor progression.  相似文献   

10.
Ligand-stimulated growth factor receptors are rapidly internalized and transported to early endosomes. Unstimulated receptors are also internalized constitutively, although at a slower rate, and delivered to the same organelle. At early endosomes, stimulated receptors are sorted for the lysosomal degradation pathway, whereas unstimulated receptors are mostly recycled back to the cell surface. To investigate the role of Hrs, an early endosomal protein, in this sorting process, we overexpressed Hrs in HeLa cells and examined the intracellular trafficking of epidermal growth factor receptor (EGFR) in EGF-stimulated and unstimulated cells. Overexpression of Hrs inhibited the trafficking of EGFR from early endosomes, resulting in an accumulation of EGFR on early endosomes in both ligand-stimulated and unstimulated cells. On the other hand, overexpression of Hrs mutants with a deletion or a point mutation within the FYVE domain did not inhibit the trafficking. These results suggest that Hrs regulates the sorting of ligand-stimulated and unstimulated growth factor receptors on early endosomes, and that the FYVE domain, which is required for Hrs to reside in a microdomain of early endosomes, plays an essential role in the function of Hrs.  相似文献   

11.
Vps27 recruits ESCRT machinery to endosomes during MVB sorting   总被引:1,自引:0,他引:1  
Down-regulation (degradation) of cell surface proteins within the lysosomal lumen depends on the function of the multivesicular body (MVB) sorting pathway. The function of this pathway requires the class E vacuolar protein sorting (Vps) proteins. Of the class E Vps proteins, both the ESCRT-I complex (composed of the class E proteins Vps23, 28, and 37) and Vps27 (mammalian hepatocyte receptor tyrosine kinase substrate, Hrs) have been shown to interact with ubiquitin, a signal for entry into the MVB pathway. We demonstrate that activation of the MVB sorting reaction is dictated largely through interactions between Vps27 and the endosomally enriched lipid species phosphatidylinositol 3-phosphate via the FYVE domain (Fab1, YGL023, Vps27, and EEA1) of Vps27. ESCRT-I then physically binds to Vps27 on endosomal membranes via a domain within the COOH terminus of Vps27. A peptide sequence in this domain, PTVP, is involved in the function of Vps27 in the MVB pathway, the efficient endosomal recruitment of ESCRT-I, and is related to a motif in HIV-1 Gag protein that is capable of interacting with Tsg101, the mammalian homologue of Vps23. We propose that compartmental specificity for the MVB sorting reaction is the result of interactions of Vps27 with phosphatidylinositol 3-phosphate and ubiquitin. Vps27 subsequently recruits/activates ESCRT-I on endosomes, thereby facilitating sorting of ubiquitinated MVB cargoes.  相似文献   

12.
The retromer is a cytosolic/peripheral membrane protein complex that mediates the retrieval of the cation-independent mannose 6-phosphate receptor from endosomes to the trans-Golgi network (TGN) in mammalian cells. Previous studies showed that the mammalian retromer comprises three proteins, named Vps26, Vps29, and Vps35, plus the sorting nexin, SNX1. There is conflicting evidence, however, as to whether a homologous sorting nexin, SNX2, is truly a component of the retromer. In addition, the nature of the subunit interactions and assembly of the mammalian retromer complex are poorly understood. We have addressed these issues by performing biochemical and functional analyses of endogenous retromers in the human cell line HeLa. We found that the mammalian retromer complex consists of two autonomously assembling subcomplexes, namely, a Vps26-Vps29-Vps35 obligate heterotrimer and a SNX1/2 alternative heterodimer or homodimer. The association of Vps26-Vps29-Vps35 with endosomes requires the presence of either SNX1 or SNX2, whereas SNX1/2 can be recruited to endosomes independently of Vps26-Vps29-Vps35. We also found that the presence of either SNX1 or SNX2 is essential for the retrieval of the cation-independent mannose 6-phosphate receptor to the TGN. These observations indicate that the mammalian retromer complex assembles by sequential association of SNX1/2 and Vps26-Vps29-Vps35 subcomplexes on endosomal membranes and that SNX1 and SNX2 play interchangeable but essential roles in retromer structure and function.  相似文献   

13.
Kingston D  Chang H  Ensser A  Lee HR  Lee J  Lee SH  Jung JU  Cho NH 《Journal of virology》2011,85(20):10627-10638
The mammalian retromer is an evolutionally conserved protein complex composed of a vacuolar protein sorting trimer (Vps 26/29/35) that participates in cargo recognition and a sorting nexin (SNX) dimer that binds to endosomal membranes. The retromer plays an important role in efficient retrograde transport for endosome-to-Golgi retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR), a receptor for lysosomal hydrolases, and other endosomal proteins. This ultimately contributes to the control of cell growth, cell adhesion, and cell migration. The herpesvirus saimiri (HVS) tyrosine kinase-interacting protein (Tip), required for the immortalization of primary T lymphocytes, targets cellular signaling molecules, including Lck tyrosine kinases and the p80 endosomal trafficking protein. Despite the pronounced effects of HVS Tip on T cell signal transduction, the details of its activity on T cell immortalization remain elusive. Here, we report that the amino-terminal conserved, glutamate-rich sequence of Tip specifically interacts with the retromer subunit Vps35 and that this interaction not only causes the redistribution of Vps35 from the early endosome to the lysosome but also drastically inhibits retromer activity, as measured by decreased levels of CI-MPR and lower activities of cellular lysosomal hydrolases. Physiologically, the inhibition of intracellular retromer activity by Tip is ultimately linked to the downregulation of CD4 surface expression and to the efficient in vitro immortalization of primary human T cells to interleukin-2 (IL-2)-independent permanent growth. Therefore, HVS Tip uniquely targets the retromer complex to impair the intracellular trafficking functions of infected cells, ultimately contributing to efficient T cell transformation.  相似文献   

14.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is well known to terminate cell signaling by sorting activated receptors to the MVB/lysosomal pathway. Here we identify a distinct role of Hrs in promoting rapid recycling of endocytosed signaling receptors to the plasma membrane. This function of Hrs is specific for receptors that recycle in a sequence-directed manner, in contrast to default recycling by bulk membrane flow, and is distinguishable in several ways from previously identified membrane-trafficking functions of Hrs/Vps27p. In particular, Hrs function in sequence-directed recycling does not require other mammalian Class E gene products involved in MVB/lysosomal sorting, nor is receptor ubiquitination required. Mutational studies suggest that the VHS domain of Hrs plays an important role in sequence-directed recycling. Disrupting Hrs-dependent recycling prevented functional resensitization of the beta(2)-adrenergic receptor, converting the temporal profile of cell signaling by this prototypic G protein-coupled receptor from sustained to transient. These studies identify a novel function of Hrs in a cargo-specific recycling mechanism, which is critical to controlling functional activity of the largest known family of signaling receptors.  相似文献   

15.
The ubiquitin-binding protein Hrs and endosomal sorting complex required for transport (ESCRT)-I and ESCRT-III are involved in sorting endocytosed and ubiquitinated receptors to lysosomes for degradation and efficient termination of signaling. In this study, we have investigated the role of the ESCRT-II subunit Vps22/EAP30 in degradative protein sorting of ubiquitinated receptors. Vps22 transiently expressed in HeLa cells was detected in endosomes containing endocytosed epidermal growth factor receptors (EGFRs) as well as Hrs and ESCRT-I and ESCRT-III. Depletion of Vps22 by small interfering RNA, which was accompanied by decreased levels of other ESCRT-II subunits, greatly reduced degradation of EGFR and its ligand EGF as well as the chemokine receptor CXCR4. EGFR accumulated on the limiting membranes of early endosomes and aberrantly small multivesicular bodies in Vps22-depleted cells. Phosphorylation and nuclear translocation of extracellular-signal-regulated kinase1/2 downstream of the EGF-activated receptor were sustained by depletion of Hrs or the ESCRT-I subunit Tsg101. In contrast, this was not the case when Vps22 was depleted. These results indicate an important role for Vps22 in ligand-induced EGFR and CXCR4 turnover and suggest that termination of EGF signaling occurs prior to ESCRT-II engagement.  相似文献   

16.
Sorting nexins (SNX) comprise a family of proteins with homology to several yeast proteins, including Vps5p and Mvp1p, that are required for the sorting of proteins to the yeast vacuole. Human SNX1, -2, and -4 have been proposed to play a role in receptor trafficking and have been shown to bind to several receptor tyrosine kinases, including receptors for epidermal growth factor, platelet-derived growth factor, and insulin as well as the long form of the leptin receptor, a glycoprotein 130-associated receptor. We now describe a novel member of this family, SNX6, which interacts with members of the transforming growth factor-beta family of receptor serine-threonine kinases. These receptors belong to two classes: type II receptors that bind ligand, and type I receptors that are subsequently recruited to transduce the signal. Of the type II receptors, SNX6 was found to interact strongly with ActRIIB and more moderately with wild type and kinase-defective mutants of TbetaRII. Of the type I receptors, SNX6 was found to interact only with inactivated TbetaRI. SNXs 1-4 also interacted with the transforming growth factor-beta receptor family, showing different receptor preferences. Conversely, SNX6 behaved similarly to the other SNX proteins in its interactions with receptor tyrosine kinases. Strong heteromeric interactions were also seen among SNX1, -2, -4, and -6, suggesting the formation in vivo of oligomeric complexes. These findings are the first evidence for the association of the SNX family of molecules with receptor serine-threonine kinases.  相似文献   

17.
We previously described enterophilin-1 (Ent-1), a new intestinal protein bearing an extended leucine zipper and a B30.2 domain. Ent-1 expression is associated with growth arrest and enterocyte differentiation. To investigate the importance of Ent-1 in the differentiation, we performed a yeast two-hybrid screening. We identified sorting nexin 1 (SNX1) as a novel partner of Ent-1 and confirmed the specificity of interaction by co-immunoprecipitation experiments in mammalian cells. SNX1 is associated with endosomal membranes and triggers the endosome-to-lysosome pathway of epidermal growth factor receptor (EGFR). We observe by immunofluorescence microscopy that Ent-1 and SNX1 are co-localized on vesicular and tubulovesicular structures, which are different from early endosome antigen 1-containing endosomes. By gel filtration chromatography, we show that Ent-1 and SNX1 co-eluted in macromolecular complexes containing part of EGFR. Furthermore, overexpressed Ent-1 decreases cell surface EGFR. Ent-1 and SNX1 co-overexpression strongly extends EGFR diminution, indicating a synergetic effect of both proteins on cell surface EGFR removal. Interestingly, the increase of endogenous Ent-1 expression correlates with the decrease of EGFR during spontaneous differentiation of Caco-2 cells. We thus propose a role of Ent-1 in the trafficking of EGFR to down-regulate intestinal mitogenic signals, highlighting the mechanisms of cell growth arrest associated with enterocytic differentiation.  相似文献   

18.
The biogenesis of multivesicular bodies and endosomal sorting of membrane cargo are driven forward by the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III. ESCRT-I is characterized in yeast as a complex consisting of Vps23, Vps28, and Vps37. Whereas mammalian homologues of Vps23 and Vps28 (named Tsg101 and hVps28, respectively) have been identified and characterized, a mammalian counterpart of Vps37 has not yet been identified. Here, we show that a regulator of proliferation, hepatocellular carcinoma related protein 1 (HCRP1), interacts with Tsg101, hVps28, and their upstream regulator Hrs. The ability of HCRP1 (which we assign the alternative name hVps37A) to interact with Tsg101 is conferred by its mod(r) domain and is shared with hVps37B and hVps37C, two other mod(r) domain-containing proteins. HCRP1 cofractionates with Tsg101 and hVps28 by size exclusion chromatography and colocalizes with hVps28 on LAMP1-positive endosomes. Whereas depletion of Tsg101 by siRNA reduces cellular levels of both hVps28 and HCRP1, depletion of HCRP1 has no effect on Tsg101 or hVps28. Nevertheless, HCRP1 depletion strongly retards epidermal growth factor (EGF) receptor degradation. Together, these results indicate that HCRP1 is a subunit of mammalian ESCRT-I and that its function is essential for lysosomal sorting of EGF receptors.  相似文献   

19.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.  相似文献   

20.
The molecular mechanisms of endocytosis and exocytosis are not yet fully understood. Hrs and Hbp, two tightly associated proteins in eukaryotic cells, have been implicated in these cellular processes. Hrs is homologous to Vps27p, an endosomal protein required for vacuolar and endocytic trafficking in yeast. Hrs is localized to early endosomes and is required for the normal morphology of early endosomes in mammalian cells. Hrs also associates with proteins implicated in endocytosis and exocytosis such as SNAP-25 and Eps15. Hrs treatment inhibits neurotransmitter release in permeabilized neuronal cells and its overexpression inhibits internalization of transferrin. Overexpression of dominant-negative Hbp mutants inhibits ligand-induced downregulation of growth factor/receptor complexes and immunoglobulin E receptor-triggered degranulation of secretory granules in mast cells. These observations suggest an important role for the Hrs/Hbp protein complex in vesicular trafficking during endocytosis and exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号