首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ayako Futami  Günter Hauska 《BBA》1979,547(3):597-608
Transient absorption changes during reduction of quinone in liposomes by external dithionite, in the absence and presence of initially trapped ferricyanide, were matched with absorption spectra of semiquinone and quinone in the blue region. Plastoquinone, ubiquinone-9 and phylloquinone, each having an isoprenoid side chain were compared with trimethyl-p-benzoquinone, ubiquinone-9 and menadione, which lack a long side chain.Semiquinone transients could only be observed by our spectroscopic technique during reduction of quinones lacking the chain. If Triton X-100 was added to the liposomes preparation semiquinone transients were also observed with the isoprenoid quinones. This result is consistent with the view that isoprenoid quinones build domains in the membranes, in which the life time of the semiquinone might be decreased by fast disproportionation, and to which dithionite has limited access.  相似文献   

2.
Physiological quinones carrying isoprenoid side chains have been compared with homologues lacking the side chain, for their ability to carry electrons and protons from dithionite to ferricyanide, trapped in liposomes. Six differential observations were made: (1) Plastoquinone and ubiquinones, with a side chain of more than two isoprene units, are by far better mediators than their short-chain homologues. Also other benzoquinones lacking a long side chain are poor catalysts, except dimethyl-methylenedioxy-p-benzoquinone, a highly autooxidizable compound. Tocopherol is a good catalyst. (2) Vitamin K-1 and K-2 are poor mediators compared to vitamin K-3. (3) The reaction catalyzed by quinones carrying long isoprenoid side chains has an about three-fold higher activation energy, irrespective of the catalytic efficiency. (4) The reaction catalyzed by quinones lacking a long side chain follows pseudo first-order kinetics, while the reaction with quinones carrying a long side chain is of apparently higher order. (5) The rate with ubiquinone-1 is increasing pH, while with ubiquinone-9 it is decreasing. (6) The reaction mediated by short-chain quinones seems to be satuarated at lower dithionite concentration. We conclude that isoprenoid quinones are able to translocate electrons and protons in lipid membranes, and that the side chain has a strong impact on the mechanism. This and the relevance of the model reaction for electron and proton transport in photosynthesis and respiration is discussed.  相似文献   

3.
4.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1'-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1'-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1'-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore alpha-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base approximately conjugate of 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone and octadecylamine > chlorobiumquinone approximately 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 approximately ubiquinone-10. After irradiation with near-UV light, transmembrane alpha-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as alpha-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

5.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1′-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1′-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1′-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore α-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base ? conjugate of 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone and octadecylamine >> chlorobiumquinone ? 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 ? ubiquinone-10. After irradiation with near-UV light, transmembrane α-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as α-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

6.
Four genes that encode the homologues of plant geranylgeranyl reductase were isolated from a hyperthermophilic archaeon Archaeoglobus fulgidus, which produces menaquinone with a fully saturated heptaprenyl side chain, menaquinone-7(14H). The recombinant expression of one of the homologues in Escherichia coli led to a distinct change in the quinone profile of the host cells, although the homologue is the most distantly related to the geranylgeranyl reductase. The new compounds found in the profile had successively longer elution times than those of ordinary quinones from E. coli, i.e., menaquinone-8 and ubiquinone-8, in high-performance liquid chromatography on a reversed-phase column. Structural analyses of the new compounds by electron impact-mass spectrometry indicated that their molecular masses progressively increase relative to the ordinary quinones at a rate of 2 U but that they still contain quinone head structures, strongly suggesting that the compounds are quinones with partially saturated prenyl side chains. In vitro assays with dithionite as the reducing agent showed that the prenyl reductase is highly specific for menaquinone-7, rather than ubiquinone-8 and prenyl diphosphates. This novel enzyme noncovalently binds flavin adenine dinucleotide, similar to geranylgeranyl reductase, but was not able to utilize NAD(P)H as the electron donor, unlike the plant homologue.  相似文献   

7.
The efficiency of incorporation of plastoquinones and ubiquinones into phospholipid liposomes has been studied. The representatives of short (PQ1 and UQ1) middle (PQ4 and UQ4) and long (PQ9, UQ9 and UQ10) prenylquinones have been used to investigate the effect of quinone side chain length. The properties of hydroquinones have been also thoroughly examined in relation to the quinone forms. The extraction procedure was modified and further developed which enables removing of nonincorporated quinone by pentane washing and then determination of quinone content inside the lipid bilayer. The quantitatively evaluation of the amount of prenylquinone was assayed by means of HPLC analysis which offers much greater sensitivity and could be easily applied in case of hydroquinones. It has been found that PQ1 and UQ1 as well as their reduced forms were present mainly (about 80%) in the aqueous phase, when attempting to introduce them into phospholipid bilayer. In case of quinones having four and more isoprenyl units in side chain, a high level of quinone incorporation, ranging about 95%, was observed. The results pointed out that when comparing the effects of different exogenous quinones on membrane related processes, one has to consider the effectiveness of their incorporation within lipid bilayer.  相似文献   

8.
Xing C  Skibo EB 《Biochemistry》2000,39(35):10770-10780
Described herein is the chemistry of aziridinyl semiquinone species, which are formed upon one-electron metabolic reduction of aziridinyl quinone antitumor agents. The semiquinone species undergo a type of electrocyclic reaction known as a 1,5-sigmatropic shift of hydrogen. This reaction converts the aziridinyl group to both ethylamino and amino groups resulting in a loss of cytotoxicity. Since the radical anion conjugate base does not undergo ring opening as fast as the semiquinone, it was possible to determine the semiquinone pK(a) values by plotting the percent sigmatropic products versus pH. Aziridinyl quinones based on benzoquinones, such as DZQ and AZQ, possess semiquinone pK(a) values below neutrality. In contrast, an indole-based aziridinyl quinone possesses a semiquinone pK(a) value of 9.3. Single electron reduction of DZQ and AZQ by NADPH: cytochrome P-450 reductase at physiological pH therefore affords the radical anion without any sigmatropic rearrangement products. In contrast, the same reduction of an aziridinyl indoloquinone affords the semiquinone which is rapidly converted to sigmatropic rearrangement products. These findings suggest that aziridinyl quinone antitumor agents based on indoles will be rapidly inactivated by one electron-reductive metabolism. A noteworthy example is the indoloquinone agent EO9, which is rapidly metabolized in vivo. In contrast, benzoquinone-based aziridinyl quinone antitumor agents such as AZQ, DZQ, and the new benzoquinone analogue RH1 do not suffer from this problem.  相似文献   

9.
The long-range diffusion coefficients of isoprenoid quinones in a model of lipid bilayer were determined by a method avoiding fluorescent probe labeling of the molecules. The quinone electron carriers were incorporated in supported dimyristoylphosphatidylcholine layers at physiological molar fractions (<3 mol%). The elaborate bilayer template contained a built-in gold electrode at which the redox molecules solubilized in the bilayer were reduced or oxidized. The lateral diffusion coefficient of a natural quinone like UQ10 or PQ9 was 2.0 +/- 0.4 x 10(-8) cm2 s(-1) at 30 degrees C, two to three times smaller than the diffusion coefficient of a lipid analog in the same artificial bilayer. The lateral mobilities of the oxidized or reduced forms could be determined separately and were found to be identical in the 4-13 pH range. For a series of isoprenoid quinones, UQ2 or PQ2 to UQ10, the diffusion coefficient exhibited a marked dependence on the length of the isoprenoid chain. The data fit very well the quantitative behavior predicted by a continuum fluid model in which the isoprenoid chains are taken as rigid particles moving in the less viscous part of the bilayer and rubbing against the more viscous layers of lipid heads. The present study supports the concept of a homogeneous pool of quinone located in the less viscous region of the bilayer.  相似文献   

10.
The respiratory chain of a marine Vibrio alginolyticus contains two types of NADH-quinone reductase (NQR): one is an Na(+)-dependent NQR functioning as an Na+ pump (NQR-1) and the other is an Na(+)-independent NQR (NQR-2). NQR-2 was purified about 55-fold from the membrane of mutant Nap-1 which is devoid of NQR-1, and its properties were compared with those of NQR-1. In contrast to NQR-1, the purified NQR-2 does not require any salts for activity and is not inhibited by up to 0.4 M salts. The optimum pH of NQR-2 is between 6.8 and 7.8, which is about 0.7 ph units lower than that of NQR-1. NQR-2 is insensitive to strong inhibitors of NQR-1 such as p-chloromercuribenzoate, Ag+ and 2-heptyl-4-hydroxyquinoline N-oxide. Using inverted membrane vesicles, it was confirmed that NQR-2 has no capacity to generate a membrane potential. NQR-2 reduces menadione and ubiquinone-1 by a two-electron reduction pathway. Since the NADH-reacting FAD-containing beta-subunit of NQR-1 reduces quinones by a one-electron reduction pathway, the mode of quinone reduction is closely related to energy coupling; the formation of semiquinone radicals as an intermediate is likely to be essential to functioning as an ion pump.  相似文献   

11.
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.  相似文献   

12.
Electron transport from H2, NADPH, NADH and succinate to O2 or ferricytochrome c in respiratory particles isolated from Anacystis nidulans in which hydrogenase had been induced was abolished after extraction of the membranes with n-pentane; oxidation of ascorbate plus NNN'N'-tetramethyl-p-phenylenediamine remained unaffected. Incorporation of authentic ubiquinone-10, plastoquinone-9, menaquinone-7 and phylloquinone (in order of increasing efficiency) restored the electron-transport reactions. ATP-dependent reversed electron flow from NNN'N'-tetramethyl-p-phenylenediamine to NADP+ or, via the membrane-bound hydrogenase, to H+ was likewise abolished by pentane extraction and restored by incorporation of phylloquinone. Participation of the incorporated quinones in the respiratory electron-transport reactions of reconstituted particles was confirmed by measuring the degree of steady-state reduction of the quinones. Isolation and identification of the quinones present in native Anacystis membranes yielded mainly plastoquinone-9 and phylloquinone; neither menaquinone nor alpha-tocopherolquinone could be detected. Together with the results from reconstitution experiments this suggests that phylloquinone might function as the main respiratory quinone in Anacystis nidulans.  相似文献   

13.
After fusion of small unilamellar phospholipid liposomes with mitochondrial inner membranes, the rate of electron transfer between membrane dehydrogenases and cytochrome c decreases as the average distance between integral membrane proteins increases, suggesting that electron transfer is mediated through a diffusional process in the membrane plane (Schneider, H., Lemasters, J. J., H?chli, M., and Hackenbrock, C. R. (1980)., J. Biol. Chem. 255, 3748-3756). The role of ubiquinone in this process was evaluated by fusing liposomes containing ubiquinone-10 or ubiquinone-6, with inner membranes. In control membranes enriched with phospholipid only, ubiquinol-cytochrome c reductase and NADH- and succinate-cytochrome c reductase activities decreased proportionally to the increase in bilayer lipid. These decreases were restored substantially in phospholipid plus ubiquinone-supplemented membranes. The degree to which restoration occurred was dependent upon the length of the isoprenoid side chain of the ubiquinone with the shorter chain length ubiquinone-6, always giving greater restoration than ubiquinone-10. It is concluded that electron transfer between flavin-linked dehydrogenases (Complexes I and II) and cytochrome bc1 (Complex III) occurs by independent, lateral diffusion of ubiquinone as well as independent, lateral diffusion of ubiquinone as well as the protein complexes within the plane of the membrane.  相似文献   

14.
The possible role of quinones in the electron transport system of Aerobacter aerogenes was investigated. The only quinone found in measurable amounts in bacteria grown in minimal media under both aerobic and anaerobic conditions was ubiquinone-8. Membrane-bound ubiquinone-8 could be removed by extraction with pentane, or destroyed by ultraviolet irradiation, with a concomitant loss of both reduced nicotinamide adenine dinucleotide (NADH) oxidase and NADH-linked respiratory nitrate reductase activity. In the extracted membrane preparations, these enzymatic activities could be restored, both to the same degree, by incorporation of ubiquinone-6, -8, or -10, but not by incorporation of menaquinones. The NADH oxidation and the nitrate reduction were sensitive to the respiratory inhibitors dicoumarol, lapachol, and cyanide. The results obtained indicate that ubiquinone-8 mediates the electron transport between NADH and oxygen as well as between NADH and nitrate. Branching of the electron transport chain to oxygen and nitrate occurs after an initial common pathway.  相似文献   

15.
Flavin electron transferases can catalyze one- or two-electron reduction of quinones including bioreductive antitumor quinones. The recombinant neuronal nitric oxide synthase (nNOS) reductase domain, which contains the FAD-FMN prosthetic group pair and calmodulin-binding site, catalyzed aerobic NADPH-oxidation in the presence of the model quinone compound menadione (MD), including antitumor mitomycin C (Mit C) and adriamycin (Adr). Calcium/calmodulin (Ca2+/CaM) stimulated the NADPH oxidation of these quinones. The MD-mediated NADPH oxidation was inhibited in the presence of NAD(P)H:quinone oxidoreductase (QR), but Mit C- and Adr-mediated NADPH oxidations were not. In anaerobic conditions, cytochrome b5 as a scavenger for the menasemiquinone radical (MD*-) was stoichiometrically reduced by the nNOS reductase domain in the presence of MD, but not of QR. These results indicate that the nNOS reductase domain can catalyze a only one-electron reduction of bivalent quinones. In the presence or absence of Ca2+/CaM, the semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by MD, but the fully reduced flavin species did not significantly accumulate under these conditions. Air-stable semiquinone did not react rapidly with MD, but the fully reduced species of both flavins, FAD and FMN, could donate one electron to MD. The intramolecular electron transfer between the two flavins is the rate-limiting step in the catalytic cycle [H. Matsuda, T. Iyanagi, Biochim. Biophys. Acta 1473 (1999) 345-355). These data suggest that the enzyme functions between the 1e- <==> 3e- level during one-electron reduction of MD, and that the rates of quinone reductions are stimulated by a rapid electron exchange between the two flavins in the presence of Ca2+/CaM.  相似文献   

16.
Flavoenzymes may reduce quinones in a single-electron, mixed single- and two-electron, and two-electron way. The mechanisms of two-electron reduction of quinones are insufficiently understood. To get an insight into the role of flavin semiquinone stability in the regulation of single- vs. two-electron reduction of quinones, we studied the reactions of wild type Anabaena ferredoxin:NADP(+)reductase (FNR) with 48% FAD semiquinone (FADH*) stabilized at the equilibrium (pH 7.0), and its Glu301Ala mutant (8% FADH* at the equilibrium). We found that Glu301Ala substitution does not change the quinone substrate specificity of FNR. However, it confers the mixed single- and two-electron mechanism of quinone reduction (50% single-electron flux), whereas the wild type FNR reduces quinones in a single-electron way. During the oxidation of fully reduced wild type FNR by tetramethyl-1,4-benzoquinone, the first electron transfer (formation of FADH*) is about 40 times faster than the second one (oxidation of FADH*). In contrast, the first and second electron transfer proceeded at similar rates in Glu301Ala FNR. Thus, the change in the quinone reduction mechanism may be explained by the relative increase in the rate of second electron transfer. This enabled us to propose the unified scheme of single-, two- and mixed single- and two-electron reduction of quinones by flavoenzymes with the central role of the stability of flavin/quinone ion-radical pair.  相似文献   

17.
The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxifying pathway which protects the cell from the formation of these reactive intermediates. By using menadione (2-methyl-1,4-naphthoquinone) and isolated hepatocytes, the relative contribution of the two pathways to quinone metabolism has been studied and a protective role for DT-diaphorase demonstrated. Moreover, in the presence of cytotoxic concentrations of menadione rapid changes in intracellular thiol and Ca2+ homeostasis were observed. These were associated with alterations in the surface structure of the hepatocytes which may be an early indication of cytotoxicity.  相似文献   

18.
Kaupp M 《Biochemistry》2002,41(9):2895-2900
Quantum chemical calculations have provided evidence for the role of tryptophan residues in the electron transfer process of photosystem I (PS-I). The interaction of Trp with quinone acceptors and their radical anions in the A(1) site of PS-I has been modeled by various indole-quinone and indole-semiquinone complexes. MP2 optimizations show that, while neutral quinones and an indole molecule prefer a pi-stacked arrangement, semiquinone radical anions prefer a T-stacked conformation with significant N-H...pi hydrogen bonding interactions. Comparison of density functional calculations of electronic g-tensors with electron paramagnetic resonance data strongly suggests that hydrogen-bonded T-shaped arrangements occur upon reduction of quinone acceptors without an extended side chain (e.g., duroquinone or naphthoquinone), when reconstituted into the phylloquinone-depleted A(1) site of PS-I. In contrast, for the native phylloquinone (vitamin K(1), Q(K)), reorientation of the semiquinone radical anion is prevented by side chain-protein interactions. For a fixed pi-stacked arrangement, the extent of the intermolecular interaction is reduced upon one-electron reduction. This corresponds to a lowering of the redox potential of the P(700)(+)*Q(K)(-)* radical pair, due to interactions of Q(K) with a tryptophan. Together with the comparably weak hydrogen bonding in PS-I, the proposed model explains the very negative redox potential of the A(1) site, needed for forward electron transfer. T-stacking hydrogen bonds to semiquinones may also have to be considered in many other electron transfer processes in living organisms.  相似文献   

19.
Moniliella tomentosa was investigated for the presence of different quinones that might be involved in the cyanide-sensitive and/or cyanide-insensitive electron-transport pathways. The naturally occurring quinone in Moniliella tomentosa was found to be ubiquinone-45. Other quinone species could not be detected. The concentration of ubiquinone-45 in mitochondria is not related to the presence or absence of the alternative oxidase activity.  相似文献   

20.
The possible occurrence of isoprenoid lipids in the tapeworm, Hymenolepis diminuta, was investigated by analytic and biosynthetic methods. Two-dimensional thin layer chromatography (TLC) resolved the worm's non-saponifiable lipids into cholesterol, farnesol, and several unknown compounds, two of which migrated with dolichol standards on TLC and reacted with phthalic anhydride, a probe for alcohols; the major compound also exhibited a mass spectrum very similar to that of a dolichol standard. A third unknown compound separable by TLC, apparently a quinone, was intrinsically red, was decolorized by treatment with sodium dithionite and migrated on TLC in a more polar position than either ubiquinone-50 or vitamin K1. All three compounds, as well as farnesol, were labelled when worms were incubated with [14C]-mevalonolactone, suggesting that they are endogenous isoprenoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号