首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium ions are an important second messenger in living cells. Indeed calcium signals in the form of waves have been the subject of much recent experimental interest. It is now well established that these waves are composed of elementary stochastic release events (calcium puffs or sparks) from spatially localised calcium stores. The aim of this paper is to analyse how the stochastic nature of individual receptors within these stores combines to create stochastic behaviour on long time-scales that may ultimately lead to waves of activity in a spatially extended cell model. Techniques from asymptotic analysis and stochastic phase–plane analysis are used to show that a large cluster of receptor channels leads to a release probability with a sigmoidal dependence on calcium density. This release probability is incorporated into a computationally inexpensive model of calcium release based upon a stochastic generalisation of the fire-diffuse-fire (FDF) threshold model. Numerical simulations of the model in one and two dimensions (with stores arranged on both regular and disordered lattices) illustrate that stochastic calcium release leads to the spontaneous production of calcium sparks that may merge to form saltatory waves. Illustrations of spreading circular waves, spirals and more irregular waves are presented. Furthermore, receptor noise is shown to generate a form of array enhanced coherence resonance whereby all calcium stores release periodically and simultaneously.  相似文献   

2.
Robert V  Triffaux E  Savignac M  Pelletier L 《Biochimie》2011,93(12):2087-2094
Calcium signalling is essential for most of the biological T-cell activities, including in Th2 lymphocytes, a T-cell subset that produce interleukin 4, 5 and 13 and which is involved in allergic diseases. T-cell receptor engagement induces the production of inositol trisphosphate that binds to its receptor, releasing intracellular Ca2+ stores. STIM in the endo (sarco) plasmic reticulum (ER/SR) is a Ca2+ sensor that perceives the depletion of intracellular Ca2+ stores, localizes near the cell membrane and allows the activation of ORAI, the main calcium channels at the cell membrane. However, other calcium channels at the membrane of intracellular compartments and at the cell membrane can also contribute to the TCR-driven intracellular Ca2+ rise. Among them, voltage-dependent calcium (Cav1) channels have been reported in several types of T-lymphocytes, although how they are gated in these non-excitable cells remains unsolved. We have shown that Cav1 channel expression was selectively up regulated in Th2 lymphocytes. In this review, we will discuss about the diversity of the Ca2+ channels responsible for Ca2+ homeostasis in the different cell subsets and the interactions between these molecules, which can account for the variety of the calcium responses depending upon the functions of effector T-cells.  相似文献   

3.
Johnson JD  Chang JP 《Cell calcium》2005,37(6):573-581
Goldfish somatotropes contain multiple functionally distinct classes of non-mitochondrial intracellular Ca(2+) stores. In this study, we investigated the role of mitochondrial Ca(2+) handling in the control of hormone secretion. Inhibition of mitochondrial Ca(2+) uptake with 10 microM ruthenium red (RR) and 10 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP) caused a small and reversible increase in cytosolic [Ca(2+)]. Despite relatively modest global Ca(2+) signals, RR and CCCP stimulated robust GH secretion under basal culture conditions. CCCP-stimulated hormone release was abolished in cells pre-incubated with 50 microM BAPTA-AM, suggesting that elevations in cytosolic [Ca(2+)] mediate this release of GH. Both caffeine-sensitive intracellular Ca(2+) stores and L-type Ca(2+) channels can be the source of the Ca(2+) buffered by mitochondria in somatotropes. The stimulatory effect of RR on caffeine-stimulated GH release was enhanced dramatically in the presence of ryanodine, pointing to a complex interaction between these three Ca(2+) stores. Inhibition of mitochondrial Ca(2+) uptake with RR augmented GH release evoked by only one of the two endogenous gonadotropin-releasing hormones. Thus, we provide the first evidence that mitochondrial Ca(2+) buffering is differentially involved in specific agonist Ca(2+) signaling pathways and plays an important role in the control of basal GH release.  相似文献   

4.
It has long been known that many bone diseases, including osteoporosis, involve abnormalities in osteoclastic bone resorption. As a result, there has been intense study of the mechanisms that regulate both the differentiation and bone resorbing function of osteoclast cells. Calcium (Ca2+) signaling appears to play a critical role in the differentiation and functions of osteoclasts. Cytoplasmic Ca2+ oscillations occur during RANKL-mediated osteoclastogenesis. Ca2+ oscillations provide a digital Ca2+ signal that induces osteoclasts to up-regulate and autoamplify nuclear factor of activated T cells c1 (NFATc1), a Ca2+/calcineurin-dependent master regulator of osteoclastogenesis. Here we review previous studies on Ca2+ signaling in osteoclasts as well as recent breakthroughs in understanding the basis of RANKL-induced Ca2+ oscillations, and we discuss possible molecular players in this specialized Ca2+ response that appears pivotal for normal bone function. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Abstract: We used cultured rat chromaffin cells to test the hypothesis that Ca2+ entry but not release from internal stores is utilized for exocytosis. Two protocols were used to identify internal versus external Ca2+ sources: (a) Ca2+ surrounding single cells was transiently displaced by applying agonist with or without Ca2+ from an ejection pipette. (b) Intracellular stores of Ca2+ were depleted by soaking cells in Ca2+-free plus 1 mM EGTA solution before transient exposure to agonist plus Ca2+. Exocytosis from individual cells was measured by microelectrochemical detection, and the intracellular Ca2+ concentration ([Ca2+]i) was measured by indo-1 fluorescence. KCl (35 mM) and nicotine (10 µM) caused an immediate increase in [Ca2+]i and secretion in cells with or without internal Ca2+ stores, but only when applied with Ca2+ in the ejection pipette. Caffeine (10 mM) and muscarine (30 µM) evoked exocytosis whether or not Ca2+ was included in the pipette, but neither produced responses in cells depleted of internal Ca2+ stores. Pretreatment with ryanodine (0.1 µM) inhibited caffeine- but not muscarine-stimulated responses. Elevated [Ca2+]i and exocytosis exhibited long latency to onset after stimulation by caffeine (2.9 ± 0.38 s) or muscarine (2.2 ± 0.25 s). However, the duration of caffeine-evoked exocytosis (7.1 ± 0.8 s) was significantly shorter than that evoked by muscarine (33.1 ± 3.5 s). The duration of caffeine-evoked exocytosis was not affected by changing the application period between 0.5 and 30 s. An ~20-s refractory period was found between repeated caffeine-evoked exocytotic bursts even though [Ca2+]i continued to be elevated. However, muscarine or nicotine could evoke exocytosis during the caffeine refractory period. We conclude that muscarine and caffeine mobilize different internal Ca2+ stores and that both are coupled to exocytosis in rat chromaffin cells. The nicotinic component of acetylcholine action depends primarily on influx of external Ca2+. These results and conclusions are consistent with our original observations in the perfused adrenal gland.  相似文献   

6.
Cytosolic calcium (Cai2+) is a second messenger that is important for the regulation of secretion in many types of tissues. Bile duct epithelial cells, or cholangiocytes, are polarized epithelia that line the biliary tree in liver and are responsible for secretion of bicarbonate and other solutes into bile. Cai2+ signaling plays an important role in the regulation of secretion by cholangiocytes, and this review discusses the machinery involved in the formation of Ca2+ signals in cholangiocytes, along with the evidence that these signals regulate ductular secretion. Finally, this review discusses the evidence that impairments in cholangiocyte Ca2+ signaling play a primary role in the pathogenesis of cholestatic disorders, in which hepatic bile secretion is impaired.  相似文献   

7.
Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.  相似文献   

8.
Lacrimal glands provide the important function of lubricating and protecting the ocular surface. Failure of proper lacrimal gland function results in a number of debilitating dry eye diseases. Lacrimal glands secrete lipids, mucins, proteins, salts and water and these secretions are at least partially regulated by neurotransmitter-mediated cell signaling. The predominant signaling mechanism for lacrimal secretion involves activation of phospholipase C, generation of the Ca2+-mobilizing messenger, IP3, and release of Ca2+ stored in the endoplasmic reticulum. The loss of Ca2+ from the endoplasmic reticulum then triggers a process known as store-operated Ca2+ entry, involving a Ca2+ sensor in the endoplasmic reticulum, STIM1, which activates plasma membrane store-operated channels comprised of Orai subunits. Recent studies with deletions of the channel subunit, Orai1, confirm the important role of SOCE in both fluid and protein secretion in lacrimal glands, both in vivo and in vitro.  相似文献   

9.
10.
More than 65% of patients with diabetes mellitus die from cardiovascular disease or stroke. Hyperglycemia, due to either reduced insulin secretion or reduced insulin sensitivity, is the hallmark feature of diabetes mellitus. Vascular dysfunction is a distinctive phenotype found in both types of diabetes and could be responsible for the high incidence of stroke, heart attack, and organ damage in diabetic patients. In addition to well-documented endothelial dysfunction, Ca2+ handling alterations in vascular smooth muscle cells (VSMCs) play a key role in the development and progression of vascular complications in diabetes. VSMCs provide not only structural integrity to the vessels but also control myogenic arterial tone and systemic blood pressure through global and local Ca2+ signaling. The Ca2+ signalosome of VSMCs is integrated by an extensive number of Ca2+ handling proteins (i.e. channels, pumps, exchangers) and related signal transduction components, whose function is modulated by endothelial effectors. This review summarizes recent findings concerning alterations in endothelium and VSMC Ca2+ signaling proteins that may contribute to the vascular dysfunction found in the diabetic condition.  相似文献   

11.
12.
Low extracellular pH (pHe) occurs in a number of clinical conditions and sensitizes to the development of pancreatitis. The mechanisms responsible for this sensitization are unknown. Because abnormal Ca(2+) signaling underlies many of the early steps in the pathogenesis of pancreatitis, we evaluated the effect of decreasing pHe from 7.4 to 7.0 on Ca(2+) signals in the acinar cell. Low pHe significantly increased the amplitude of cerulein-induced Ca(2+) signals. The enhancement in amplitude was localized to the basolateral region of the acinar cell and was reduced by pretreatment with ryanodine receptor (RYR) inhibitors. Because basolateral RYRs also have been implicated in the pathogenesis of pancreatitis, we evaluated the effects of RYR inhibitors on pancreatitis responses in acidic conditions. RYR inhibitors significantly reduced the sensitizing effects of low pHe on zymogen activation and cellular injury. These findings suggest that enhanced RYR-mediated Ca(2+) signaling in the basolateral region of the acinar cell is responsible for the injurious effects of low pHe on the exocrine pancreas.  相似文献   

13.
Diabetic neuropathy is a frequent complication of diabetes mellitus, for which no adequate clinical treatment is currently available. One of the main reasons for the absence of effective treatment of this disease is that information on how metabolic, vascular, and other abnormalities involved in the pathogenesis of diabetic neuropathy lead to dysfunction of nerve cells and pathways remains insufficient. Recent studies demonstrated that substantial abnormalities of calcium homeostasis in input neurons of the somatosensory nociceptive system are associated with many symptoms of diabetic neuropathy. Although proof of the causal linkage between calcium abnormalities and neuropathic complications is not conclusive, current research in neuroscience mostly indicates that such a linkage exists. Practically all known modifications of synaptic transmission in both central and peripheral nervous systems result from calcium-dependent modifications of the molecular players involved in this transmission. This is why the main goal of our review is to analyze in detail the fundamental cellular and molecular calcium-regulating mechanisms that are deteriorated in diabetes. As an important end-point of the proposed review, the capability of a widely used calcium channel blocker, nimodipine, to correct cytosolic and endoplasmic reticulum calcium abnormalities in neurons of the dorsal root ganglia and spinal dorsal horn and possible curative value of this agent in diabetic neuropathy are discussed.Neirofiziologiya/Neurophysiology, Vol. 36, No. 4, pp. 348–353, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

14.
Calcium transients and contractions of cardiac myocytes consist of phasic component, relaxing spontaneously independently of membrane voltage and of the tonic component (TC) relaxing only upon repolarization. Experimental data reviewed in this article suggest that most Ca(2+) activating TC is released from sarcoplasmic reticulum (SR) via the ryanodine receptors (RyRs). Most likely these RyRs are activated by sustained Ca(2+) influx. However, its route may differ depending on species and state of the cells. It seems that in rat RyRs responsible for TC are activated by the sustained Ca(2+) current. In guinea-pig the blockers of Ca(2+) current or reverse mode Na(+)/Ca(2+) exchange do not inhibit TC, so these routes seem unlikely. In myocytes of the failing human hearts TC is activated mostly via the reverse mode Na(+)/Ca(2+) exchange and contribution of SR is negligible. The mechanism of TC in the normal human cardiomyocytes has not been investigated. Thus, despite investigation of TC for half a century many problems concerning the mechanism of its activation and maintenance as well as its physiological meaning remain unsolved.  相似文献   

15.
To investigate the cellular mechanisms for altered cardiac function in senescence, we measured Ca(2+) transients and Ca(2+) sparks in ventricular cardiomyocytes from 6- to 24-month-old Fisher 344 (F344) rat hearts. The single channel properties of ryanodine receptors from adult and senescent hearts were also studied. In senescent myocytes, we observed a decreased peak [Ca(2+)](i) amplitude and an increased time constant for decay (tau), both of which correlated with a reduced Ca(2+) content of the sarcoplasmic reticulum (SR). Our studies also revealed that senescent cardiomyocytes had an increased frequency of Ca(2+) sparks and a slight but statistically significant decrease in average amplitude, full-width-at-half-maximum (FWHM) and full-duration-at-half-maximum (FDHM). Single channel recordings of ryanodine receptors (RyR2) demonstrated that in aging hearts, the open probability (P(o)) of RyR2 was increased but the mean open time was shorter, providing a molecular correlate for the increased frequency of Ca(2+) sparks and decreased size of sparks, respectively. Thus, modifications of normal RyR2 gating properties may play a role in the altered Ca(2+) homeostasis observed in senescent myocytes.  相似文献   

16.
Glucagon like-peptide-1 (GLP-1) is an incretin hormone with antidiabetic effects through stimulating insulin secretion, β cell neogenesis, satiety sensation, and inhibiting glucagon secretion. Administration of GLP-1 provides cardioprotective effects through attenuating cardiac inflammation and insulin resistance. GLP-1 also modulates the heart rate and systolic pressure, which suggests that GLP-1 may have cardiac electrical effects. Therefore, the purposes of this study were to evaluate whether GLP-1 has direct cardiac effects and identify the underlying mechanisms. Patch clamp, confocal microscopy with Fluo-3 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis, and calcium regulatory proteins in HL-1 atrial myocytes with and without GLP-1 (1 and 10 nM) incubation for 24 h. GLP-1 (1 and 10 nM) and control cells had similar action potential durations. However, GLP-1 at 10 nM significantly increased calcium transients and sarcoplasmic reticular Ca2+ contents. Compared to the control, GLP-1 (10 nM)—treated cells significantly decreased phosphorylation of the ryanodine receptor at S2814 and total phospholamban, but there were similar protein levels of sarcoplasmic reticular Ca2+-ATPase and the sodium–calcium exchanger. Moreover, exendin (9–39) amide (a GLP-1 receptor antagonist, 10 nM) attenuated GLP-1-mediated effects on total SR content and phosphorylated ryanodine receptor S2814. This study demonstrates GLP-1 may regulate HL-1 cell arrhythmogenesis through modulating calcium handling proteins.  相似文献   

17.
The recently discovered second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) is central to the onset of intracellular Ca2+ signals induced by several stimuli, including fertilization. The nature of the Ca2+ pool mobilized by NAADP is still controversial. Depending on the cell type, NAADP may target either an acidic compartment with lysosomal properties or ryanodine receptors (RyRs) on endoplasmic reticulum. In addition, NAADP elicits a robust Ca2+ influx into starfish oocytes by activating a Ca2+-mediated current across the plasma membrane. In the present study, we employed the single-electrode intracellular recording technique to assess the involvement of either acidic organelles or RyRs in NAADP-elicited Ca2+ entry. We found that neither drugs which interfere with acidic compartments nor inhibitors of RyRs affected NAADP-induced depolarization. These data further support the hypothesis that a yet unidentified plasma membrane Ca2+ channel is the target of NAADP in starfish oocytes.  相似文献   

18.
Mammalian hearts experience calcium overload during extreme and prolonged hypoxia and the calcium overload may lead to enzyme activation and cell death. Several calcium transport systems were examined in muskrat hearts and compared to those found in rat hearts to determine if there is a species difference that might be related to the muskrats' superior ability to survive hypoxia. Radiolabeled nitredendipine binding was determined in rat and muskrat hearts to estimate the density of voltage gated calcium channels in surface membranes. There were no species differences. Calcium release channel density in the sarcoplasmic reticulum was estimated by the determination of radiolabeled ryanodine binding in muskrat and rat heart SR membranes. No differences were revealed between species. The SR uptake of calcium was measured in SR membranes from the hearts of the two species. No differences were found in the B(max) values, however, the muskrat SR membranes did have a slightly lower K(m) value. There were large species differences in Na(+)/Ca(2+) exchange in SL membranes with the muskrat heart having approximately 3.5 times the transport capacity of rat SL membranes. During hypoxic conditions in which there is extensive ATP depletion leading to [Na(+)](i) accumulation and discharge of cellular membrane potential, the Na(+)/Ca(2+) exchanger may operate in the reverse mode and import calcium into the cell and accelerate hypoxic damage. Prior to reaching this state a robust Na(+)/Ca(2+) exchange would facilitate the maintenance of normal diastolic calcium levels and calcium cycling. Muskrats hearts are hypoxia tolerant by virtue of their ability to reduce metabolic demand and generate ATP anaerobically thus, maintaining a favorable ATP balance. Therefore, the relative overexpression of Na(+)/Ca(2+) exchangers in muskrat hearts may be beneficial in the preservation of contractile function and calcium homeostasis in this freshwater diving mammal.  相似文献   

19.
Cellular senescence is a stable cell proliferation arrest induced by a variety of stresses including telomere shortening, oncogene activation and oxidative stress. This process plays a crucial role in many physiopathological contexts, especially during aging when cellular senescence favors development of age-related diseases, shortening lifespan. However, the molecular and cellular mechanisms controlling senescence are still a matter of active research. In the last decade, there has been emerging literature indicating a key involvement of calcium signaling in cellular senescence. In this review we will initially give an account of the direct evidence linking calcium and the regulation of senescence. We will then review our current knowledge on the role of calcium in some senescence-associated features and physiopathological conditions, which will shed light on additional ways in which calcium signaling is implicated in cellular senescence.  相似文献   

20.
Gizak A  Majkowski M  Dus D  Dzugaj A 《FEBS letters》2004,576(3):445-448
As our recent investigation revealed, in mammalian heart muscle, fructose 1,6-bisphosphatase (FBPase)--a key enzyme of glyconeogenesis--is located around the Z-line, inside cells' nuclei and, as we demonstrate here for the first time, it associates with intercalated discs. Since the degree of association of numerous enzymes with subcellular structures depends on the metabolic state of the cell, we studied the effect of elevated Ca2+ concentration on localization of FBPase in cardiomyocytes. In such conditions, FBPase dissociated from the Z-line, but no visible effect on FBPase associated with intercalated discs or on the nuclear localization of the enzyme was observed. Additionally, Ca2+ appeared to be a strong inhibitor of muscle FBPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号