首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The TRPC3/6/7 subfamily of cation channels   总被引:7,自引:0,他引:7  
Trebak M  Vazquez G  Bird GS  Putney JW 《Cell calcium》2003,33(5-6):451-461
The mammalian transient receptor potential (TRP) proteins consist of a superfamily of Ca2+-permeant non-selective cation channels with structural similarities to Drosophila TRP. The TRP superfamily can be divided into three major families, among them the "canonical TRP" family (TRPC). The seven protein products of the mammalian TRPC family of genes (designated TRPC1-7) share in common the activation through PLC-coupled receptors and have been proposed to encode components of native store-operated channels in different cell types. In addition, the three members of the TRPC3/6/7 subfamily of TRPC channels can be activated by diacylglycerol analogs, providing a possible mechanism of activation of these channels by PLC-coupled receptors. This review summarizes the current knowledge about the mechanism of activation of the TRPC3/6/7 subfamily, as well as the potential role of these proteins as components of native Ca2+-permeant channels.  相似文献   

2.
Na(+)/Ca(2+) exchangers (NCXs) and members of the canonical transient receptor potential (TRPC) channels play an important role in Ca(2+) homeostasis in heart and brain. With respect to their overlapping expression and their role as physiological Ca(2+) influx pathways a functional discrimination of both mechanisms seems to be necessary. Here, the effect of the reverse-mode NCX inhibitor KB-R7943 was investigated on different TRPC channels heterologously expressed in HEK293 cells. In patch-clamp recordings KB-R7943 potently blocked currents through TRPC3 (IC(50)=0.46 microM), TRPC6 (IC(50)=0.71 microM), and TRPC5 (IC(50)=1.38 microM). 1-Oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry was nearly completely suppressed by 10 microM KB-R7943 in TRPC6-transfected cells. Thus, KB-R7943 is able to block receptor-operated TRP channels at concentrations which are equal or below those required to inhibit reverse-mode NCX activity. These data further suggest that the protective effects of KB-R7943 in ischemic tissue may, at least partly, be due to inhibition of TRPC channels.  相似文献   

3.
Aires V  Hichami A  Boulay G  Khan NA 《Biochimie》2007,89(8):926-937
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.  相似文献   

4.
The ability to sense and adapt to a wide variety of environmental changes is crucial for the survival of all cells. Transient receptor potential (TRP) channels play pivotal roles in these sensing and adaptation reactions. In vertebrates, there are about 30 TRP channels; these are divided into six subfamilies by homology of the protein sequences. We have previously revealed that a group of TRP channels senses oxidative stress and induces cellular signaling and gene expression. TRPM2, a member of the TRPM subfamily, is activated by reactive oxygen species (ROS) via second-messenger production. Recently, we demonstrated that Ca2+ influx through TRPM2 activated by ROS induces chemokine production in monocytes, which aggravates inflammatory neutrophil infiltration. Additionally, we also revealed that nitric oxide, chemical compounds containing reactive disulfide, and inflammatory mediators directly activate the TRPC, TRPV, and TRPA subfamilies via oxidative modification of cysteine residues. In this review, we describe how these TRP channels sense oxidative stress and induce adaptation reactions, and we discuss the biological importance of oxidative stress-activated TRP channels.  相似文献   

5.
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.  相似文献   

6.
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.  相似文献   

7.
Reversal of the Na+/Ca2+ -exchanger (NCX) has been shown to mediate Ca2+ influx during activation of G-protein linked receptors. Functional coupling between the reverse-mode NCX and the canonical transient receptor potential channels (TRPCs) has been proposed to mediate Ca2+ influx in HEK-293 cells overexpressing TRPC3. In this communication we present evidence for similar functional coupling of NCX to endogenously expressed TRPC6 in rat aorta smooth muscle cells. Selective inhibition of reverse-mode NCX with KB-R7943 and of non-selective cation-channels with SKF-96365 abolished Ca2+ influx in response to agonist stimulation (ATP). Expression of a dominant negative TRPC6 mutant also reduced the Ca2+ influx in proportion to its transfection efficiency. Calyculin A, which is known to disrupt the junctions of the plasma membrane and sarco/endoplasmic reticulum, increased global Na+ elevations and reduced stimulated Ca2+ influx. Together our data provide evidence that localized Na+ elevations are generated by TRPC6 and drive reversal of NCX to mediate Ca2+ influx.  相似文献   

8.
The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes.  相似文献   

9.
CaV1 and CaV2 voltage-gated calcium channels evolved from an ancestral CaV1/2 channel via gene duplication somewhere near the stem animal lineage. The divergence of these channel types led to distinguishing functional properties that are conserved among vertebrates and bilaterian invertebrates and contribute to their unique cellular roles. One key difference pertains to their regulation by calmodulin (CaM), wherein bilaterian CaV1 channels are uniquely subject to pronounced, buffer-resistant Ca2+/CaM-dependent inactivation, permitting negative feedback regulation of calcium influx in response to local cytoplasmic Ca2+ rises. Early diverging, nonbilaterian invertebrates also possess CaV1 and CaV2 channels, but it is unclear whether they share these conserved functional features. The most divergent animals to possess both CaV1 and CaV2 channels are placozoans such as Trichoplax adhaerens, which separated from other animals over 600 million years ago shortly after their emergence. Hence, placozoans can provide important insights into the early evolution of CaV1 and CaV2 channels. Here, we build upon previous characterization of Trichoplax CaV channels by determining the cellular expression and ion-conducting properties of the CaV1 channel orthologue, TCaV1. We show that TCaV1 is expressed in neuroendocrine-like gland cells and contractile dorsal epithelial cells. In vitro, this channel conducts dihydropyridine-insensitive, high-voltage–activated Ca2+ currents with kinetics resembling those of rat CaV1.2 but with left-shifted voltage sensitivity for activation and inactivation. Interestingly, TCaV1, but not TCaV2, exhibits buffer-resistant Ca2+/CaM-dependent inactivation, indicating that this functional divergence evolved prior to the emergence of bilaterian animals and may have contributed to their unique adaptation for cytoplasmic Ca2+ signaling within various cellular contexts.  相似文献   

10.
Ryanodine receptor-calcium release channels play a pivotal role in the calcium signaling that mediates muscle excitation-contraction coupling. Their membrane organization into regular patterns, functional gating studies and theoretical analysis of receptor clustering have led to models that invoke allosteric interaction between individual channel oligomers as a critical mechanism for control of calcium release. Here we show that in reconstituted "checkerboard-like" lattices that mimic in situ membrane channel arrays, each oligomer is interlocked physically with four adjacent oligomers via a specific domain-domain interaction. Direct physical coupling between ryanodine receptors provides structural evidence for an inter-oligomer allosteric mechanism in channel regulation. Therefore, in addition to established cytosolic and luminal regulation of function, these observations indicate that channel-channel communication through physical coupling provides a novel mode of regulation of intracellular calcium release channels.  相似文献   

11.
12.
13.

Background

To establish the physiological role of calpain, it is necessary to define how the protease can escape from the effect of its natural inhibitor calpastatin, since both proteins co-localize into the cell cytosol.

Methods

To answer this question, we have overexpressed four fluorescent calpastatin constructs, differing in the composition of their XL- and L-domains, and the intracellular trafficking of this protein inhibitor has been followed by single cell fluorescence imaging.

Results and conclusions

By the use of these calpastatin forms differing in the type of exon-derived sequences contained in the XL- and L-domains, we have demonstrated that the sequence coded by exon 6, containing multiple phosphorylation sites, is directly involved in determining the cell localization of calpastatin. In fact, exposure to cAMP promotes the recruitment into aggregates of those calpastatin forms containing the exon 6 sequence. These protein movements are directly related to the level of cytosolic inhibitory capacity and thereby to the extent of intracellular calpain activation.

General significance

The recruitment of calpastatin into aggregates allows the translocation and activation of the protease to the membranes; on the contrary, the presence of large amounts of calpastatin in the cytosol prevents both processes, protecting the cell from undesired proteolysis.  相似文献   

14.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

15.
Summary Ciliary motility was examined optically in tissue cultures from frog palate epithelium and frog's esophagus as a function of extracellular concentration of adenosine 5-triphosphate (ATP) and related compounds. The addition of micromolar concentration of ATP caused a strong enhancement of frequency and wave velocity in the direction of the effective stroke. Since adenosine 5-[, imido]-triphosphate (AMP-PNP), a nonhydrolyzable analog of ATP, produces the same effects, ATP hydrolysis is not required. The overall potency is ATP AMP-PNP>ADP adenosine>AMP. It is suggested that both the phosphate and the base moieties are involved in ATP binding.The enhancement of ciliary activity by extracellular ATP is dependent on the presence of extracellular Ca2+, which can be replaced by extracellular Mg2+. The effect of a number of potent inhibitors of the voltage-gated calcium channels on the stimulation of ciliary activity by ATP were examined. No effect was detected in the concentration range within which these agents are specific. On the other hand, quinidine, a potent inhibitor of K+ (calcium-dependent) channels, inhibits the effect of ATP.The following model is suggested: exogenous ATP interacts with a membrane receptor in the presence of Ca2+, a cascade of events occurs which mobilizes intracellular calcium, thereby increasing the cytosolic free Ca2+ concentration which consequently opens the calcium-activated K+ channels, which then leads to a change in membrane potential. The ciliary response to these changes is the enhancement of ciliary activity.This work was supported by a grant from the Fund for Basic Research administered by the Israel Academy of Science and Humanities.  相似文献   

16.
Although CaV1.2 and CaV1.3 are two subtypes of L-type Ca2+ channels expressed in the CNS, functions of CaV1.3 have not been well elucidated compared to CaV1.2. Here, we found that CaV1.3-NT associates with GABABR2-CT using yeast two-hybrid, GST pull-down and co-immunoprecipitation assays. We also demonstrated co-localization of CaV1.3 and GABABR2 in HEK293 cells and cultured hippocampal neurons. Whole-cell patch-clamp and Ca2+-imaging experiments revealed that activation of GABABR increases CaV1.3 currents and intracellular Ca2+ via CaV1.3, but not CaV1.2. These results show a physical and functional interaction between CaV1.3 and GABABR, suggesting the potential pivotal roles of CaV1.3 in the CNS.

Structured summary

MINT-7975667: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by two hybrid (MI:0018)MINT-7975740: Cav1.3 (uniprotkb:P27732) and GABABR2 (uniprotkb:O75899) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7966007, MINT-7966016: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by anti bait coimmunoprecipitation (MI:0006)MINT-7975712, MINT-7975691: Cav1.3 (uniprotkb:P27732) physically interacts (MI:0915) with GABABR2 (uniprotkb:O88871) by pull down (MI:0096)MINT-7966026: GABABR2 (uniprotkb:O88871) and Cav1.3 (uniprotkb:P27732) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

17.
Store-operated Ca2+ entry (SOCE) is a widespread mechanism to elevate the intracellular Ca2+ concentrations and stimulate downstream signaling pathways affecting proliferation, secretion, differentiation and death in different cell types. In immune cells, immune receptor stimulation induces intracellular Ca2+ store depletion that subsequently activates Ca2+-release-activated-Ca2+ (CRAC) channels, a prototype of store-operated Ca2+ (SOC) channels. CRAC channel opening leads to activation of diverse downstream signaling pathways affecting proliferation, differentiation, cytokine production and cell death. Recent identification of STIM1 as the endoplasmic reticulum Ca2+ sensor and Orai1 as the pore subunit of CRAC channels has provided the much-needed molecular tools to dissect the mechanism of activation and regulation of CRAC channels. In this review, we discuss the recent advances in understanding the associating partners and posttranslational modifications of Orai1 and STIM1 proteins that regulate diverse aspects of CRAC channel function.  相似文献   

18.
Store depletion has been shown to induce Ca2+ entry by Na+/Ca+ exchange (NCX) 1 reversal in proliferative vascular smooth muscle cells (VSMCs). The study objective was to investigate the role of transient receptor potential canonical (TRPC) channels in store depletion and NCX1 reversal in proliferative VSMCs. In cultured VSMCs, expressing TRPC1, TRPC4, and TRPC6, the removal of extracellular Na+ was followed by a significant increase of cytosolic Ca2+ concentration that was inhibited by KBR, a selective NCX1 inhibitor. TRPC1 knockdown significantly suppressed store-operated, channel-mediated Ca2+ entry, but TRPC4 knockdown and TRPC6 knockdown had no effect. Separate knockdown of TRPC1, TRPC4, or TRPC6 did not have a significant effect on thapsigargin-initiated Na+ increase in the peripheral regions with KBR treatment, but knockdown of both TRPC4 and TRPC6 did. Stromal interaction molecule (STIM)1 knockdown significantly reduced TRPC4 and TRPC6 binding. The results demonstrated that TRPC4–TRPC6 heteromultimerization linked Ca2+ store depletion and STIM1 accumulation with NCX reversal in proliferative VSMCs.  相似文献   

19.
In order to study the conductances of the Sarcoplasmic Reticulum (SR) membrane, microsomal fractions from cardiac SR were isolated by differential and sucrose gradient centrifugations and fused into planar lipid bilayers (PLB) made of phospholipids. Using either KCl or K-gluconate solutions, a large conducting K+ selective channel was characterized by its ohmic conductance (152 pS in 150 mM K+), and the presence of short and long lasting subconducting states. Its open probability Po increased with depolarizing voltages, thus supporting the idea that this channel might allow counter-charge movements of monovalent cations during rapid SR Ca2+ release. An heterogeneity in the kinetic behavior of this channel would suggest that the cardiac SR K+ channels might be regulated by cytoplasmic, luminal, or intra SR membrane biochemical mechanisms. Since the behavior was not modified by variations of [Ca2+] nor by the addition of soluble metabolites such as ATP, GTP, cAMP, cGMP, nor by phosphorylation conditions on both sides of the PLB, a specific interaction with a SR membrane component is postulated. Another cation selective channel was studied in asymmetric Ca2+, Ba2+ or Mg2+-HEPES buffers. This channel displayed large conductance values for the above divalent cations 90, 100, and 40 pS, respectively. This channel was activated by µM Ca2+ while its Ca2+ sensitivity was potentiated by millimolar ATP. However Mg2+ and calmodulin modulated its gating behavior. Ca2+ releasing drugs such as caffeine and ryanodine increased its Po. All these features are characteristics of the SR Ca2+ release channel. The ryanodine receptor which has been purified and reconstituted into PLB, may form a cation selective pathway. This channel displays all the regulatory sites of the native cardiac SR Ca2+ release channel. However, when NA was used as charge carrier, multiple subconducting states were observed. In conclusion, the reconstitution experiments have yield a great deal of informations about the biochemical and biophysical events that may regulated the ionic flux across the SR membrane.  相似文献   

20.
《Cell calcium》2016,60(6):271-279
TRPC proteins form cation channels that integrate and relay cellular signals by mechanisms involving lipid recognition and lipid-dependent gating. The lipohilic/amphiphilic molecules that function as cellular activators or modulators of TRPC proteins span a wide range of chemical structures. In this context, cellular redox balance is likely linked to the lipid recognition/gating features of TRPC channels. Both classical ligand-protein interactions as well as indirect and promiscuous sensory mechanisms have been proposed. Some of the recognition processes are suggested to involve ancillary lipid-binding scaffolds or regulators as well as dynamic protein–protein interactions determined by bilayer architecture. A complex interplay of protein–protein and protein-lipid interactions is likely to govern the gating and/or plasma membrane recruitment of TRPC channels, thereby providing a distinguished platform for signal integration and coincident signal detection. Both the primary molecular event(s) of lipid recognition by TRPC channels as well as the transformation of these events into distinct gating movements is poorly understood at the molecular level, and it remains elusive whether lipid sensing in TRPCs is conferred to a distinct sensor domain. Recent structural information on the molecular action of lipophilic activators in distantly related members of the TRP superfamily encourages speculations on TRPC gating mechanisms involved in lipid recognition/gating. This review aims to provide an update on the current understanding of the lipid–dependent control of TRPC channels with focus on the TRPC lipid sensing, signal-integration hub and a short discussion of potential links to redox signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号