首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mast cells are tissue-resident immune cells that are capable of signaling many different cell types in vascularized tissue including epithelia and smooth muscle. We have developed an in vitro coculture system in which secretion of serotonin by a mucosal mast cell line (RBL-2H3) can be studied at a single cell level by measuring Ca2+ transients in fura-2 loaded mast cells and serotonin-sensitive A7r5 smooth muscle cells using fluorescence video microscopy and digital image processing. A7r5 cells elevate intracellular Ca2+ via 5HT2 receptors in response to bath-applied serotonin with an ED50 for serotonin of 550nM. Crosslinking lgE receptors with antigen caused Ca2+ transients in the mucosal mast cells. Ca2+ responses in the smooth muscle were detected ≈? 30–240 sec after the initiation of the mast cell Ca2+ responses. Smooth muscle Ca2+ responses were dependent on preloading mast cells with serotonin and were blocked by the 5HT2 antagonist ketanserin. The timing and magnitude of the smooth muscle responses indicated that secretion from mast cells can lead to local concentrations of serotonin in the range of 300 nM within 1 min of antigen stimulation. This coculture technique has allowed the first direct demonstration of serotonin-mediated signaling between immune cells and vascular elements. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.  相似文献   

3.
Cytosolic Ca2+ concentration and membrane potential were monitored in individual cultured enothelial cells mechanically stimulated with a micropipette attached to the stage of a microscope. Both dimpling and poking of endothelial cells resulted in Ca2+i transients (from 63 ± 12 to 397 ± 52 nM, characterized by a refractory period of approx. 2 min) and cell depolarization. Ca2+i transients of the reduced amplitude (201 ± 41 nM) were evoked by mechanical stimulation of endothelial cells incubated in a Ca2+-free medium. Dimpling-induced Ca2+i transients were refractory to the pretreatments with pertussis toxin, colchicine, or cytochalasin B, and were not mimicked by an increase in the hydrodynamic pressure. In a co-perfusion system (endothelium: smooth muscle), both the KCl-induced depolarization and ionomycin-induced increase in Ca2+i in the endothelial cells resulted in the reduction of Ca2+i in the smooth muscle cells. The data reported are consistent with the phenomenon of vascular relaxation in response to the increased blood flow. We hypothesize that the mechanical interaction of the formed elements with the microvascular endothelium can serve as a pacemaker for the sustained relaxation of vascular smooth muscle.  相似文献   

4.
In skeletal muscle, dysfunctional contractile activity has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. Muscle force production is impaired and fatigability and muscle fragility deteriorate with diabetes. Use of a novel in vivo model permits investigation of [Ca2+]i homeostasis in diabetic skeletal muscle. Within this in vivo environment we have shown that diabetes perturbs the Ca2+ regulatory system such that resting [Ca2+]i homeostasis following muscle contractions is compromised and elevations of [Ca2+]i are exacerbated. This review considers the impact of diabetes on the capacity of skeletal muscle to regulate [Ca2+]i, following muscle contractions and, in particular, the relationship between muscle fatigue and elevated [Ca2+]i in a highly ecologically relevant circulation-intact environment. Importantly, the role of mitochondria in calcium sequestration and the possibility that diabetes impacts this process is explored. Given the profound microcirculatory dysfunction in diabetes this preparation offers the unique opportunity to study the interrelationships among microvascular function, blood-myocyte oxygen flux and [Ca2+]i as they relate to enhanced muscle fatigability and exercise intolerance.  相似文献   

5.
Ca2+ regulates cell differentiation and morphogenesis in a diversity of organisms and dysregulation of Ca2+ signal transduction pathways leads to many cellular pathologies. In Dictyostelium Ca2+ induces ecmB expression and stalk cell differentiation in vitro. Here we have analyzed the pattern of ecmB expression in intact and bisected slugs and the effect of agents that affect Ca2+ levels or antagonize calmodulin (CaM) on this expression pattern. We have shown that Ca2+ and CaM regulate ecmB expression and pstAB/pstB cell differentiation in vivo. Agents that increase intracellular Ca2+ levels increased ecmB expression and/or pstAB and pstB cell differentiation, while agents that decrease intracellular Ca2+ or antagonize CaM decreased it. In isolated slug tips agents that affect Ca2+ levels and antagonize CaM had differential effect on ecmB expression and cell differentiation in the anterior versus posterior zones. Agents that increase intracellular Ca2+ levels increased the number of ecmB expressing cells in the anterior region of slugs, while agents that decrease intracellular Ca2+ levels or antagonize CaM activity increased the number of ecmB expressing cells in the posterior. We have also demonstrated that agents that affect Ca2+ levels or antagonize CaM affect cells motility and regeneration of shape in isolated slug tips and backs and regeneration of tips in isolated slug backs. To our knowledge, this is the first study detailing the pattern of ecmB expression in regenerating slugs as well as the role of Ca2+ and CaM in the regeneration process and ecmB expression.  相似文献   

6.
Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79]  相似文献   

7.
In the healthy adult brain microglia, the main immune-competent cells of the CNS, have a distinct (so-called resting or surveying) phenotype. Resting microglia can only be studied in vivo since any isolation of brain tissue inevitably triggers microglial activation. Here we used in vivo two-photon imaging to obtain a first insight into Ca2+ signaling in resting cortical microglia. The majority (80%) of microglial cells showed no spontaneous Ca2+ transients at rest and in conditions of strong neuronal activity. However, they reliably responded with large, generalized Ca2+ transients to damage of an individual neuron. These damage-induced responses had a short latency (0.4-4 s) and were localized to the immediate vicinity of the damaged neuron (< 50 μm cell body-to-cell body distance). They were occluded by the application of ATPγS as well as UDP and 2-MeSADP, the agonists of metabotropic P2Y receptors, and they required Ca2+ release from the intracellular Ca2+ stores. Thus, our in vivo data suggest that microglial Ca2+ signals occur mostly under pathological conditions and identify a Ca2+ store-operated signal, which represents a very sensitive, rapid, and highly localized response of microglial cells to brain damage. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
9.
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca2+ mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca2+ into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca2+ release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca2+]i trough L-type Ca2+ channels activation. In both cell types, a relatively slower Ca2+ release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca2+ released from IP3R of skeletal muscle also promotes mitochondrial Ca2+ uptake. We review here these actions of insulin on intracellular Ca2+ channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca2+ release from the SER.  相似文献   

10.
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+]i and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.  相似文献   

11.
12.
Summary Muscle and brain pigment cell specification was studied by disrupting cell adhesion, cell dissociation, and reaggregation in embryos of the ascidianStyela clava. Treatment of embryos with Ca2+-free sea water between the 2-cell and gastrula stages disrupted blastomere adhesion but did not prevent acetylcholinesterase or muscle actin expression in presumptive muscle cells. Similar treatments initiated between the 2- and 32-cell stages caused more ectoderm cells to express tyrosinase and develop pigment granules than expected from the cell lineage. Whereas 2 pigment cells become the otolith and ocellus sensory organs in normal embryos, up to 33 pigment cells could differentiate in embryos after disruption of cell adhesion. Replacement of Ca2+-free sea water with normal sea water restored cell adhesion and usually resulted in development of embryos containing the conventional number of pigment cells. Dissociation of embryos into single cells between the 2- and 64-cell stages and culture of these cells beyond the fate restricted stage had no effect on the accumulation of muscle actin mRNA and muscle actin synthesis, but blocked pigment cell differentiation. Reaggregation of the dissociated cells did not enhance the number of cells that developed muscle features, but rescued pigment cell development. The results indicate that ascidian muscle cell specification occurs by an autonomous mechanism, whereas pigment cell specification occurs by a conditional mechanism involving cell interactions. In addition, the results suggest that negative cell interactions may restrict the potential for pigment cell development in the ectoderm of cleaving ascidian embryos.  相似文献   

13.
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.  相似文献   

14.
The ependyma of the spinal cord harbours stem cells which are activated by traumatic spinal cord injury. Progenitor-like cells in the central canal (CC) are organized in spatial domains. The cells lining the lateral aspects combine characteristics of ependymocytes and radial glia (RG) whereas in the dorsal and ventral poles, CC-contacting cells have the morphological phenotype of RG and display complex electrophysiological phenotypes. The signals that may affect these progenitors are little understood. Because ATP is massively released after spinal cord injury, we hypothesized that purinergic signalling plays a part in this spinal stem cell niche. We combined immunohistochemistry, in vitro patch-clamp whole-cell recordings and Ca2+ imaging to explore the effects of purinergic agonists on ependymal progenitor-like cells in the neonatal (P1–P6) rat spinal cord. Prolonged focal application of a high concentration of ATP (1 mM) induced a slow inward current. Equimolar concentrations of BzATP generated larger currents that reversed close to 0 mV, had a linear current–voltage relationship and were blocked by Brilliant Blue G, suggesting the presence of functional P2X7 receptors. Immunohistochemistry showed that P2X7 receptors were expressed around the CC and the processes of RG. BzATP also generated Ca2+ waves in RG that were triggered by Ca2+ influx and propagated via Ca2+ release from internal stores through activation of ryanodine receptors. We speculate that the intracellular Ca2+ signalling triggered by P2X7 receptor activation may be an epigenetic mechanism to modulate the behaviour of progenitors in response to ATP released after injury.  相似文献   

15.
Ca2+ signaling is essential for bone metabolism. Fluid shear stress (FSS), which can induce a rapid release of calcium from endoplasmic reticulum (ER) to produce calcium transients, plays a significant role in osteoblast proliferation and differentiation. However, it is still unclear of how calcium transients induced by FSS activating a number of downstream signals which subsequently regulate cell functions. In this study, we performed a group of Ca2+ transients models, which were induced by FSS to investigate the effects of different magnitudes of Ca2+ transients in osteoblast proliferation. Further, we performed a global proteomic profile of MC3T3-E1 cells in different Ca2+ transients models stimulated by FSS. GO enrichment and KEGG pathway analysis revealed that the TCA cycle was activated in the proliferating process. The activation of TCA needed mitochondrial Ca2+ uptake which were influenced by the amplitude of Ca2+ transients induced by FSS. Our work elucidate that osteoblast proliferation induced by FSS was related to the magnitude of calcium transients, which further activated energetic metabolism signaling pathway. This work revealed further understanding the mechanism of osteoblast proliferation induced by mechanic loading and help us to design new methods for osteoporosis therapy.  相似文献   

16.
Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) transplantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC conditioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly decreased the prevalence of βIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were significantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a careful comparison of the different experimental conditions used to assess the potential of cell therapies for the treatment of spinal cord injury.  相似文献   

17.
Birds have ten pairs of protrusions, “accessory lobes”, on the lateral sides of the lumbosacral spinal cord. It has been proposed that accessory lobes act as a sensory organ of equilibrium and neurons in accessory lobes transmit sensory information to the motor center. We have reported that cells in chick accessory lobes express functional voltage-gated Na+ and K+ channels and generate action potentials. In this study, we examined properties of voltage-gated Ca2+ channels (VGCCs). The amplitude of voltage-gated Ca2+ channel currents carried by Ca2+ and Ba2+ increased gradually during 10 min rather than showing the usual run-down. The current–voltage relationship of Ba2+ currents was consistent with that of the high-voltage-activated Ca2+ channel. The proportion of Ba2+ currents inhibited by ω-conotoxin GVIA was larger than 80 %, indicating that the major subtype is N type. Amplitudes of tail currents of Ca2+ currents evoked by repetitive pulses at 50 Hz are stable for 1 s. If the major subtype of VGCCs at synaptic terminals is also N type, this property may contribute to the establishment of stable synaptic connections between accessory lobe neurons, which are reported to fire at frequencies higher than 15 Hz, and postsynaptic neurons in the spinal cord.  相似文献   

18.
The sinusoidal locomotion of Caenorhabditis elegans requires synchronous activities of neighboring body wall muscle cells. However, it is unknown whether the synchrony results from muscle electrical coupling or neural inputs. We analyzed the effects of mutating gap junction proteins and blocking neuromuscular transmission on the synchrony of action potentials (APs) and Ca2+ transients among neighboring body wall muscle cells. In wild-type worms, the percentage of synchronous APs between two neighboring cells varied depending on the anatomical relationship and junctional conductance (Gj) between them, and Ca2+ transients were synchronous among neighboring muscle cells. Compared with the wild type, knock-out of the gap junction gene unc-9 resulted in greatly reduced coupling coefficient and asynchronous APs and Ca2+ transients. Inhibition of unc-9 expression specifically in muscle by RNAi also reduced the synchrony of APs and Ca2+ transients, whereas expression of wild-type UNC-9 specifically in muscle rescued the synchrony defect. Loss of the stomatin-like protein UNC-1, which is a regulator of UNC-9-based gap junctions, similarly impaired muscle synchrony as unc-9 mutant did. The blockade of muscle ionotropic acetylcholine receptors by (+)-tubocurarine decreased the frequencies of APs and Ca2+ transients, whereas blockade of muscle GABAA receptors by gabazine had opposite effects. However, both APs and Ca2+ transients remained synchronous after the application of (+)-tubocurarine and/or gabazine. These observations suggest that gap junctions in C. elegans body wall muscle cells are responsible for synchronizing muscle APs and Ca2+ transients.  相似文献   

19.
The smooth muscle cell is the principal component responsible for involuntary control of visceral organs, including vascular tonicity, secretion, and sphincter regulation. It is known that the neurotransmitters released from nerve endings increase the intracellular Ca2+ level in smooth muscle cells followed by muscle contraction. We herein report that femtosecond laser pulses focused on the diffraction‐limited volume can induce intracellular Ca2+ increases in the irradiated smooth muscle cell without neurotransmitters, and locally increased intracellular Ca2+ levels are amplified by calcium‐induced calcium‐releasing mechanisms through the ryanodine receptor, a Ca2+ channel of the endoplasmic reticulum. The laser‐induced Ca2+ increases propagate to adjacent cells through gap junctions. Thus, ultrashort‐pulsed lasers can induce smooth muscle contraction by controlling Ca2+, even with optical stimulation of the diffraction‐limited volume. This optical method, which leads to reversible and reproducible muscle contraction, can be used in research into muscle dynamics, neuromuscular disease treatment, and nanorobot control. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号