首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

3.
Calcium release from the sarcoplasmic reticulum (SR) in cardiac muscle occurs through a specialised release channel, the ryanodine receptor, RyR, via the process of Ca-induced Ca release (CICR). The open probability of the RyR is increased by elevation of cytoplasmic Ca concentration ([Ca(2+)](i)). However, in addition to Ca, other modulators affect the RyR open probability. Agents which increase the RyR opening during systole produce a transient increase of systolic [Ca(2+)](i) followed by a return to the initial level due to a compensating decrease of SR Ca content. Increasing RyR opening during diastole decreases SR Ca content and thereby decreases systolic [Ca(2+)](i). We therefore conclude that potentiation of RyR opening will, if anything, decrease systolic [Ca(2+)](i). The effects of specific examples of modulators of the RyR, such as phosphorylation, metabolic changes, heart failure and polyunsaturated fatty acids, are discussed.  相似文献   

4.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

5.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

6.
In this study we performed the comprehensive pharmacological analysis of two stereoisomers of 4-chloro-meta-cresol (4CMC), a popular ryanodine receptor (RyR) agonist used in muscle research. Experiments investigating the Ca2+-releasing action of the isomers demonstrated that the most potent isomer was 4-chloro-orto-cresol (4COC) (EC50 = 55 ± 14 μM), although 3-chloro-para-cresol (3CPC) was more effective, as it was able to induce higher magnitude of Ca2+ flux from isolated terminal cisterna vesicles. Nevertheless, 3CPC stimulated the hydrolytic activity of the sarcoplasmic reticulum ATP-ase (SERCA) with an EC50 of 91 ± 17 μM, while 4COC affected SERCA only in the millimolar range (IC50 = 1370 ± 88 μM). IC50 of 4CMC for SERCA pump was 167 ± 8 μM, indicating that 4CMC is not a specific RyR agonist either, as it activated RyR in a similar concentration (EC50 = 121 ± 20 μM).Our data suggest that the use of 4COC might be more beneficial than 4CMC in experiments, when Ca2+ release should be triggered through RyRs without influencing SERCA activity.  相似文献   

7.
High-resolution melting (HRM) allows single-nucleotide polymorphism (SNP) detection/typing using inexpensive generic heteroduplex-detecting double-stranded DNA (dsDNA) binding dyes. Until recently HRM has been a post-PCR process. With the LightCycler 480 System, however, the entire mutation screening process, including post-PCR analysis, can be performed using a single instrument. HRM assays were developed to allow screening of the ryanodine receptor gene (RYR1) for potential mutations causing malignant hyperthermia (MH) and/or central core disease (CCD) using the LightCycler 480 System. The assays were validated using engineered plasmids and/or genomic DNA samples that are either homozygous wild type or heterozygous for one of three SNPs that lead to the RyR1 amino acid substitutions T4826I, H4833Y, and/or R4861H. The HRM analyses were conducted using two different heteroduplex-detecting dsDNA binding dyes: LightCycler 480 HRM dye and LCGreen Plus. Heterozygous samples for each of the HRM assays were readily distinguished from homozygous samples with both dyes. By using engineered plasmids, it was shown that even homozygous sequence variations can be identified by using either small amplicons or the addition of exogenous DNA after PCR. Thus, the LightCycler 480 System provides a novel, integrated, real-time PCR/HRM platform that allows high throughput, inexpensive SNP detection, and genotyping based on high-resolution amplicon melting.  相似文献   

8.
In this study, we have investigated block of potassium (K(+)) current by neomycin, a large polycation, from the luminal face of the type 3 ryanodine receptor (RyR3). Previous studies have shown that neomycin is an open channel blocker of RyR2 that interacts with negatively charged residues in the mouth of the conduction pathway to partially occlude it. In the current study, we have used neomycin as a probe to investigate proposed negatively charged regions in the luminal pore mouth of RyR3. Luminal neomycin induces concentration- and voltage-dependent partial block to a subconductance state in RyR3. Blocking parameters calculated in this study show that neomycin has a higher affinity for RyR3 than RyR2, but block may occur at the same site within the pore mouth. The change in affinity may be due to altered negative charge density at the site of interaction.  相似文献   

9.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

10.
Anthranilic diamides are an exceptionally active class of insect control chemistry that selectively activates insect ryanodine receptors causing mortality from uncontrolled release of calcium ion stores in muscle cells. Work in this area led to the successful commercialization of chlorantraniliprole for control of Lepidoptera and other insect pests at very low application rates. In search of lower log P analogs with improved plant systemic properties, exploration of cyano-substituted anthranilic diamides culminated in the discovery of a second product candidate, cyantraniliprole, having excellent activity against a wide range of pests from multiple insect orders. Here we report on the chemistry, biology and structure–activity trends for a series of cyanoanthranilic diamides from which cyantraniliprole was selected for commercial development.  相似文献   

11.
Contraction in skeletal and cardiac muscle occurs when Ca2+ is released from the sarcoplasmic reticulum (SR) through ryanodine receptor (RyR) Ca2+ release channels. Several isoforms of the RyR exist throughout the animal kingdom, which are modulated by ATP, Ca2+ and Mg2+ in the cytoplasm and by Ca2+ in the lumen of the SR. This review brings to light recent findings on their mechanisms of action in the mammalian isoforms RyR-1 and RyR-2 with an emphasis on RyR-1 from skeletal muscle. Cytoplasmic Mg2+ is a potent RyR antagonist that binds to two classes of cytoplasmic site, identified as low-affinity, non-specific inhibition sites and high-affinity Ca2+ activation sites (A-sites). Mg2+ inhibition at the A-sites is very sensitive to the cytoplasmic and luminal milieu. Cytoplasmic Ca2+, Mg2+ and monovalent cations compete for the A-sites. In isolated RyRs, luminal Ca2+ alters the Mg2+ affinity of the A-site by an allosteric mechanism mediated by luminal sites. However, in close-packed RyR arrays luminal Ca2+ can also compete with cytoplasmic ions for the A-site. Activation of RyRs by luminal Ca2+ has been attributed to either Ca2+ feedthrough to A-sites or to Ca2+ regulatory sites on the luminal side of the RyR. As yet there is no consensus on just how luminal Ca2+ alters RyR activation. Recent evidence indicates that both mechanisms operate and are likely to be important. Allosteric regulation of A-site Mg2+ affinity could trigger Ca2+ release, which is reinforced by Ca2+ feedthrough.  相似文献   

12.
K.S. Cheah  Anne M. Cheah 《BBA》1981,638(1):40-49
Comparative studies were carried out on the Ca2+-transport systems of mitochondria and sarcoplasmic reticulum from longissimus dorsi muscle of genetically selected malignant hyperthermia-prone and normal pigs in order to identify the biochemical lesion responsible for the enhanced release of Ca2+ in the sarcoplasm occurring in porcine malignant hyperthermia. Mitochondria isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs contained a significantly (P < 0.001) higher amount of endogenous long-chain fatty acids. Similar amounts of endogenous mitochondrial phospholipase A2 were observed in both types of pigs, but the total activity in malignant hyperthermia-prone pigs was at least twice that of normal. Spermine, a phospholipase A2 inhibitor, lowered the activity in both types of mitochondria to a similar final level. Mitochondria of malignant hyperthermia-prone pigs showed a significantly (P < 0.001) higher oligomycin-insensitive (Ca2+ + Mg2+)-ATPase activity, but the Mg2+-ATPase and the (Ca2+ + Mg2+)-ATPase activities were similar in both types of pigs. Sarcoplasmic reticulum isolated from longissimus dorsi muscle of malignant hyperthermia-prone pigs showed a significantly higher (Ca2+ + Mg2+)-ATPase activity and a lower rate of Ca2+ uptake; the maximal amount and the rate of Ca2+ uptake by sarcoplasmic reticulum of malignant hyperthermia-prone pigs were half that of normal. Mitochondria from longissimus dorsi muscle of malignant hyperthermia-prone pigs inhibited the Ca2+-transport system of the sarcoplasmic reticulum of longissimus dorsi from both normal and malignant hyperthermia-prone pigs, but mitochondria from normal pigs had no influence on the sarcoplasmic reticulum from either type. Experimental evidence favours the concept that long-chain fatty acids released from skeletal muscle mitochondria by endogenous mitochondrial phospholipase A2 are responsible for the enhanced release of Ca2+ from mitochondria (Cheah, K.S. and Cheah, A.M. (1981) Biochim. Biophys. Acta 634, 70–84), and also additional release of Ca2+ from sarcoplasmic reticulum into the sarcoplasm during porcine malignant hyperthermia syndrome.  相似文献   

13.
The clinical use of doxorubicin, an antineoplasmic agent, is limited by its extensive cardiotoxicity which is mediated by the mobilization of intracellular Ca2+ from SR. In order to elucidate the mechanism of Ca2+ release, we analyzed the binding sites of doxorubicin on rabbit cardiac SR (sarcoplasmic reticulum). One of the binding sites was identified as cardiac-type ryanodine receptor (RyR2) which was purified by immunoprecipitation from solubilized cardiac SR in the presence of DTT. Ligand blot analysis revealed the direct binding of doxorubicin to RyR2. The binding of doxorubicin to RyR2 was specific and displaced by caffeine. Both doxorubicin and caffeine enhanced [3H]-ryanodine binding to RyR2 in a Ca2+ dependent manner. These results suggest that there is a doxorubicin binding site on RyR2.  相似文献   

14.
We studied cation regulation of wild-type ryanodine receptor type 1 (WTRyR1), type 3 (WTRyR3), and RyR3/RyR1 chimeras (Ch) expressed in 1B5 dyspedic myotubes. Using [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes, Ca2+ titrations with WTRyR3 and three chimeras show biphasic activation that is allosterically coupled to an attenuated inhibition relative to WTRyR1. Chimeras show biphasic Mg2+ inhibition profiles at 3 and 10 μM Ca2+, no observable inhibition at 20 μM Ca2+ and monophasic inhibition at 100 μM Ca2+. Ca2+ imaging of intact myotubes expressing Ch-4 exhibit caffeine-induced Ca2+ transients with inhibition kinetics that are significantly slower than those expressing WTRyR1 or WTRyR3. Four new aspects of RyR regulation are evident: (1) high affinity (H) activation and low affinity (L) inhibition sites are allosterically coupled, (2) Ca2+ facilitates removal of the inherent Mg2+ block, (3) WTRyR3 exhibits reduced cooperativity between H activation sites when compared to WTRyR1, and (4) uncoupling of these sites in Ch-4 results in decreased rates of inactivation of caffeine-induced Ca2+ transients.  相似文献   

15.
The diamide insecticides act on the ryanodine receptor (RyR). The synthesis of various bicyclic anthranilic derivatives is reported. Their activity against the insect ryanodine receptor (RyR) and their insecticidal activity in the greenhouse is presented, as well as structure activity relationship considerations.  相似文献   

16.
Aberrant Ca2+ release from cardiac ryanodine receptors (RyR2) has been shown to be one of the most important causes of lethal arrhythmia in various types of failing hearts. We previously showed that dantrolene, a specific agent for the treatment of malignant hyperthermia, inhibits Ca2+ leakage from the RyR2 by correcting the defective inter-domain interaction between the N-terminal (1–619 amino acids) and central (2000–2500 amino acids) domains of the RyR2 and allosterically enhancing the binding affinity of calmodulin to the RyR2 in diseased hearts. In this study, we examined whether dantrolene inhibits this Ca2+ leakage, thereby preventing the pharmacologically inducible ventricular tachycardia in ventricular pressure-overloaded failing hearts. Ventricular tachycardia (VT) was easily induced after an injection of epinephrine in mice after 8 weeks of transverse aortic constriction-induced pressure-overload. Pretreatment with dantrolene almost completely inhibited the pharmacologically inducible VT. In the presence of dantrolene, the occurrence of both Ca2+ sparks and spontaneous Ca2+ transients was inhibited, which was associated with enhanced calmodulin binding affinity to the RyR2. These results suggest that dantrolene could be a new potent agent in the treatment of lethal arrhythmia in cases of acquired heart failure.  相似文献   

17.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

18.
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.  相似文献   

19.
Ryanodine receptor channelopathies   总被引:6,自引:0,他引:6  
Ryanodine receptors (RyR) are the Ca2+ release channels of sarcoplasmic reticulum that provide the majority of the [Ca2+] necessary to induce contraction of cardiac and skeletal muscle cells. In their cellular environment, RyRs are exquisitely regulated by a variety of cytosolic factors and accessory proteins so that their output signal (Ca2+) induces cell contraction without igniting signaling pathways that eventually lead to contractile dysfunction or pathological cellular remodeling. Here we review how dysfunction of RyRs, most commonly expressed as enhanced Ca2+ release at rest (skeletal muscle) or during diastole (cardiac muscle), appears to be the fundamental mechanism underlying several genetic or acquired syndromes. In skeletal muscle, malignant hyperthermia and central core disease result from point mutations in RYR1, the skeletal isoform of RyRs. In cardiac muscle, RYR2 mutations lead to catecholaminergic polymorphic ventricular tachycardia and other cardiac arrhythmias. Lastly, an altered phosphorylation of the RyR2 protein may be involved in some forms of congestive heart failure.  相似文献   

20.
Heart mitochondria utilize multiple Ca(2+) transport mechanisms. Among them, the mitochondrial ryanodine receptor provides a fast Ca(2+) uptake pathway across the inner membrane to control "excitation and metabolism coupling." In the present study, we identified a novel ryanodine-sensitive channel in the native inner membrane of heart mitochondria and characterized its pharmacological and biophysical properties by directly patch clamping mitoplasts. Four distinct channel conductances of ~100, ~225, ~700, and ~1,000 picosiemens (pS) in symmetrical 150 mm CsCl were observed. The 225 pS cation-selective channel exhibited multiple subconductance states and was blocked by high concentrations of ryanodine and ruthenium red, known inhibitors of ryanodine receptors. Ryanodine exhibited a concentration-dependent modulation of this channel, with low concentrations stabilizing a subconductance state and high concentrations abolishing activity. The 100, 700, and 1,000 pS conductances exhibited different channel characteristics and were not inhibited by ryanodine. Taken together, these findings identified a novel 225 pS channel as the native mitochondrial ryanodine receptor channel activity in heart mitoplasts with biophysical and pharmacological properties that distinguish it from previously identified mitochondrial ion channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号