首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Astrocytes release many neuroactive substances, which are stored in membrane bound vesicles and may play a role in synapse modulation and in the coupling between neuronal activity and the local blood flow. However, the mobility of these vesicles in astrocytes has not been studied yet. We here used a fluorescently tagged proatrial natriuretic peptide to label single vesicles and dynamic microscopy to monitor their mobility. To track and analyze labeled vesicles, we employed a computer software. We found two modes of vesicle mobility, directional and non-directional. The mobility of non-directional vesicles is likely determined mainly by free diffusion. Only directional vesicles displayed a straight-line motion. The relationship of mean square displacement with time in directional vesicles resembled a quadratic function, indicating that in addition to free diffusion other mechanisms may contribute to vesicle movements in astrocytes, the biophysical properties of which are similar to those of neurons.  相似文献   

2.
Intense glucose-based energy metabolism and glutamate synthesis by astrocytes require malate–aspartate-shuttle (MAS) activity to regenerate NAD+ from NADH formed during glycolysis, since brain lacks significant glycerophosphate shuttle activity. Aralar is a necessary aspartate/glutamate exchanger for MAS function in brain. Based on cytochemical immunoassays the absence of aralar in adult astrocytes was repeatedly reported. This would mean that adult astrocytes must regenerate NAD+ by producing lactate from pyruvate, eliminating its use by oxidative and biosynthetic pathways. We alternatively used astrocytes and neurons from adult brain, freshly isolated by fluorescence-activated cell sorting, to determine aralar protein by a specific antibody and its mRNA by real-time PCR. Both protein and mRNA expressions were identical in adult neurons and astrocytes and similar to whole brain levels. The same level of aralar expression was reached in well-differentiated astrocyte cultures, but not until late development, coinciding with the late-maturing brain capability for glutamate formation and degradation.  相似文献   

3.
Han BC  Koh SB  Lee EY  Seong YH 《Life sciences》2004,76(5):573-583
L-glutamate (glutamate) is an important neurotoxin as well as the major excitatory neurotransmitter. Extracellular glutamate levels are elevated following ischemia, hypoglycemia, and trauma. One consequence of elevated glutamate levels is cell swelling. Such swelling occurs primarily in astroglial cells. We characterized the regional difference in glutamate-induced swelling response of cultured astrocytes from rat cerebral cortex, hippocampus and cerebellum. Glutamate produced dose-dependent astrocytic swelling in both cerebral cortex and hippocampus, showing a maximal effect in 0.5 mM concentration, as measured by 3-O-methyl-D-[1-3H]glucose uptake. However, in cerebellum, glutamate did not produce astrocytic swelling. It has been suggested that Na+ -dependent glutamate uptake is a possible mechanism of glutamate-induced swelling. The Vmax for glutamate uptake into cerebellum astrocytes was significantly lower (6.7 nmol/mg protein/min) than those for cerebral cortex and hippocampus astrocytes (13.0 and 12.0 nmol/mg protein/min, respectively). In three regions, more than 90% of the cultured cells showed glial fibrillary acidic protein (GFAP) immunoreactivity. Immunoreactivity of GLT, one of the markers of glutamate transporters, which is expressed at low levels in cultured astrocytes, did not show any differences in three regions. However, immunoreactivities of GLAST, the other astroglial glutamate transporter, and aquaporin4 (APQ4), a water transporter, were significantly higher in cerebral cortex and hippocampus than in cerebellum. These results may explain the regional difference of glutamate-induced astrocytic swelling.  相似文献   

4.
Astrocytes produce a complex repertoire of Ca2+ events that coordinate their major functions. The principle of Ca2+ events integration in astrocytes, however, is unknown. Here we analyze whole Ca2+ events, which were defined as spatiotemporally interconnected transient Ca2+ increases. Using such analysis in single hippocampal astrocytes in culture and in slices we found that spreads and durations of Ca2+ events follow power law distributions, a fingerprint of scale-free systems. A mathematical model demonstrated that such Ca2+ dynamics can arise from intracellular inositol-3-phosphate diffusion. The power law exponent (α) was decreased by activation of metabotropic glutamate receptors (mGluRs) either by specific receptor agonist or by low frequency stimulation of glutamatergic fibers in hippocampal slices. Decrease in α indicated an increase in proportion of large Ca2+ events. Notably, mGluRs activation did not increase the frequency of whole Ca2+ events. This result suggests that neuronal activity does not trigger new Ca2+ events in astrocytes (detectable by our methods), but modulates the properties of existing ones. Thus, our results provide a new perspective on how astrocyte responds to neuronal activity by changing its Ca2+ dynamics, which might further affect local network by triggering release of gliotransmitters and by modulating local blood flow.  相似文献   

5.
围产期缺氧缺血性脑损伤中星形胶质细胞的病理生理改变   总被引:14,自引:0,他引:14  
转产期缺氧因性脑损的研究焦点集中在神经元上,但是,星形胶持细胞也参与缺氧缺血过程并起着关键作用。星形胶质细胞在缺氧缺血损伤中的改变是中枢神经系统中最早和最显著的,这种参与对缺氧缺血变为以及中枢神经系统是损伤还是修复这一最终发展有重要影响。目前,星形胶质细胞的作用越来越受到重视,对脑缺氧缺血过程中星形胶质细胞的病理生理变化也有了深入的研究。  相似文献   

6.
Conditioned medium (CM) obtained from rat cerebellar astrocytes cultured in a serumcontaining medium was able to inhibit [3H]thymidine incorporation into proliferating astrocytes, when compared to fresh medium. This effect could be attributed to two fractions of the CM with different molecular weights. The low molecular weight fraction (Mr<1,000) inhibited the cellular transport of the labeled precursor, without significantly affecting cell proliferation. The high molecular weight fraction (Mr>10,000) showed a strong inhibitory effect on astrocyte proliferation, which was documented using different assay techniques: i) [3H]thymidine incorporation performed in conditions preventing the effects of CM on transport; ii) [3H]thymidine autoradiography; iii) determination of the DNA content of the cultures. The inhibitory activity was present in media conditioned by non proliferating astrocytes treated with the antimitotic cytosine arabinoside, but not in media conditioned by neuron-enriched cultures nor in a chemically defined (N2) CM. The antiproliferative activity of astrocyte CM could be due either to a rapid depletion of mitogenic factors present in serum, or, to a secretion of growth inhibitory factor(s) by cultured astrocytes.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

7.
The astroglial cell-specific glutamate transporter subtype 2 (excitatory amino acid transporter 2, GLT1) plays an important role in excitotoxicity that develops after damage to the central nervous system (CNS) is incurred. Both the protein kinase C signaling pathway and the epidermal growth factor (EGF) pathway have been suggested to participate in the modulation of GLT1, but the modulatory mechanisms of GLT1 expression are not fully understood. In the present study, we aimed to evaluate the effects of insulin on GLT1 expression. We found that short-term stimulation of insulin led to the upregulation of both total and surface expressions of GLT1. Akt phosphorylation increased after insulin treatment, and triciribine, the inhibitor of Akt phosphorylation, significantly inhibited the effects of insulin. We also found that the upregulation of GLT1 expression correlated with increased kappa B motif-binding phosphoprotein (KBBP) and GLT1 mRNA levels. Our results suggest that insulin may modulate the expression of astrocytic GLT1, which might play a role in reactive astrocytes after CNS injuries.  相似文献   

8.
Astrocytes have a key role in the clearance and inactivation of histamine in the adult central nervous system, but transporters which mediate histamine uptake into astrocytes have not been fully characterized. We therefore investigated the kinetic and molecular characteristics of histamine uptake into cultured adult rat astrocytes. [(3)H]-histamine was taken up by astrocytes in a temperature-, time- and concentration-dependent manner and was inhibited up to 60-70% by 1mM ouabain or by substitution of NaCl with choline chloride. Specific [(3)H]-histamine uptake, determined as the difference between transport at 37 and 4°C, displayed saturation kinetics with the apparent Michaelis-Menten constant (K(m)) of 141 and 101μM and the apparent maximal uptake rate (V(max)) of 22.5 and 17.8pmol/min/mg protein, as estimated from the Woolf and the Eadie-Hofstee plots, respectively. Since our data suggested the presence of a carrier-operated histamine uptake system, we assessed the possible involvement of the organic cation transporters (OCT) 1, 2 and 3, which have been previously described to play a role in histamine transport in the central nervous system. Low level mRNA expression of all OCT isoforms was detected, but in contrast to rat brain cortex homogenate, where OCT3 was the most prominently expressed OCT isoform, OCT2 mRNA was the predominant OCT species in cultured astrocytes. However, OCT inhibitors corticosterone and decynium 22 (D22) had no effect or only modestly reduced [(3)H]-histamine uptake. Thus, our data indicate that adult rat astrocytes possess an efficient high-capacity, low-affinity carrier-operated histamine uptake system, which does not seem to involve OCTs.  相似文献   

9.
Alzheimer's amyloid beta-protein (Abeta) has been reported to potentiate glutamate toxicity in neurons, but very little is known about interaction between Abeta and glutamate in astrocytes. Therefore, in the present study, we investigated the effects of Abeta and glutamate on morphology of astrocytes. Cultured rat cortical astrocytes exhibited polygonal morphology in the absence of stimulation and differentiated into process-bearing stellate cells following exposure to Abeta (20 microM). L-Glutamate (30-1,000 microM) had no effect on astrocyte morphology in the absence of stimulation but strongly suppressed Abeta-induced stellation. The suppressive effect of L-glutamate on Abeta-induced stellation was not mimicked by glutamate receptor agonists and not blocked by glutamate receptor antagonists. In contrast, the suppressive effect of L-glutamate was mimicked by D- and L-aspartate and transportable glutamate uptake inhibitors. These results suggest that Abeta-induced astrocyte stellation is suppressed by a mechanism related to glutamate transporters.  相似文献   

10.
Abstract: Adrenomedullin, originally discovered from pheochromocytoma, is a member of the calcitonin gene-related peptide family. The production and secretion of adrenomedullin by cultured human astrocytes were studied by northern blot analysis and radioimmunoassay. Northern blot analysis showed the expression of adrenomedullin mRNA in cultured human astrocytes. Immunoreactive adrenomedullin concentrations in the culture medium were 29.6 ± 1.2 fmol/105 cells/24 h (mean ± SEM, n = 4). Treatment with interferon-γ (100 U/ml), tumor necrosis factor-α (1 and 10 ng/ml), or interleukin-1β (1 and 10 ng/ml) for 24 h caused >20-fold increases in immunoreactive adrenomedullin levels in the culture medium of human astrocytes. On the other hand, northern blot analysis showed only small increases (∼40%) in the adrenomedullin mRNA expression of human astrocytes with either 100 U/ml interferon-γ or 10 ng/ml interleukin-1β and no noticeable change with tumor necrosis factor-α. Reverse phase HPLC of the medium extracts of human astrocytes treated with interferon-γ, tumor necrosis factor-α, or interleukin-1β showed that most of immunoreactive adrenomedullin was eluted in the position of adrenomedullin-(1-52). On the other hand, immunoreactive adrenomedullin in the medium of human astrocytes without cytokine treatment was eluted earlier than the adrenomedullin standard, suggesting that this immunoreactive adrenomedullin represents adrenomedullin with some modifications or fragments of the adrenomedullin precursor. The present study has shown the production and secretion of adrenomedullin by human astrocytes and increased secretion of adrenomedullin by cytokines.  相似文献   

11.
GTP cyclohydrolase 1 (GCH1) is the rate‐limiting enzyme of a metabolic pathway synthesizing tetrahydrobiopterin (BH4), the cofactor dimerizing and activating inducible nitric oxide synthase (NOS‐2). GCH1 protein expression and enzyme activity are minimal in cultured, phenotypically stable, untreated normal adult human astrocytes (NAHA), but are strongly induced, together with NOS‐2, by a mixture of three proinflammatory cytokines (IL‐1β, TNF‐α, and IFN‐γ – the CM‐trio) released by microglia under brain‐damaging conditions. The resulting hyper‐production of NO severely harms neurons. In this study, using MALDI‐TOF/MS, PMF, Western immunoblotting (WB), and antibody microarrays we identified several proteins coimmunoprecipitating with GCH1. Under basal conditions, GCH1 was associated with various adaptor/regulator molecules involved in G‐protein‐coupled receptors signalling, protein serine/threonine phosphatase 2Cβ (PP2Cβ), and serine–threonine kinases like Ca2+ calmodulin kinases (CaMKs), casein kinases (CKs), cAMP‐dependent kinases (PKAs), and mitogen‐activated protein kinases (MAPKs). Exposure to the three cytokines' mixture (CM‐trio) significantly changed, within the 48–72 h required for the induction and activation of GCH1, the levels and identities of some of the 0 h‐associated proteins: after 72 h CK‐IIα tended to dissociate from, whereas MAPK12 and JNK3 were strongly associated with fully active GCH1. These findings provide a first enticing glimpse into the intricate mechanisms regulating GCH1 activation by proinflammatory cytokines in NAHA, and may have therapeutic implications.  相似文献   

12.
Reactive gliosis is an invariant feature of the pathology of central nervous system (CNS) injury and a major determinant of neuronal survival and regeneration. To begin to understand the alterations in astrocyte protein expression that drive glial changes that occur following injury, we used an established model system (endothelin-1 stimulation of hypertrophy) and proteomic analysis to define a discrete set of differentially expressed proteins and post-translational modifications that occur as the astrocytes change from a quiescent to a reactive state. This orchestrated set of changes included proteins involved in cytoskeletal reorganization (caldesmon, calponin, alpha B-crystallin, stathmin, collapsing response mediator protein-2), cell adhesion (vinculin, galectin-1), signal transduction (RACK-1) and astrocyte differentiation (glutamine synthetase). Using proteomic analysis to understand what drives astrocyte expression of these functionally divergent molecules may offer insight into the mechanisms by which astrocytes can exhibit both pro-regenerative and anti-regenerative activities following CNS injury.  相似文献   

13.
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.  相似文献   

14.

Aim

Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter.

Main methods

Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214–314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation.

Key findings

Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated “amoeboid” form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different.

Significance

These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter.  相似文献   

15.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.  相似文献   

16.
Effects of endothelin-1 (ET-1) on glial cell line-derived neurotrophic factor (GDNF) production in cultured astrocytes were examined. Treatment of cultured astrocytes with ET-1 (100 nM) increased mRNA levels of GDNF in 1-6h. The effect of ET-1 was inhibited by BQ788, an ET(B) receptor antagonist, but not by FR139317, an ET(A) receptor antagonist. ET-1 stimulated release of GDNF into culture medium. Dexamethasone (1 microM) and pyrrolidine dithiocarbamate (PDTC, 100 microM), which inhibit activation of NFkappaB, prevented the increases in GDNF mRNA by H(2)O(2). In contrast, the effect of ET-1 was not affected by dexamethasone and PDTC. The increase of astrocytic GDNF mRNA by ET-1 was inhibited by BAPTA/AM (30 microM) and PD98059 (50 microM), but not by calphostin C, staurosporine, and cyclosporine A. These results suggest that ET-1 stimulated expression of astrocytic GDNF through ET(B) receptor-mediated increases in cytosolic Ca(2+) and ERK activation.  相似文献   

17.
We previously demonstrated that P2X7 receptors (P2X7Rs) expressed by cultured mouse astrocytes were activated without any exogenous stimuli, but its roles in non-stimulated resting astrocytes remained unknown. It has been reported that astrocytes exhibit engulfing activity, and that the basal activity of P2X7Rs regulates the phagocytic activity of macrophages. In this study, therefore, we investigated whether P2X7Rs regulate the engulfing activity of mouse astrocytes. Uptake of non-opsonized beads by resting astrocytes derived from ddY-mouse cortex time-dependently increased, and the uptaken beads were detected in the intracellular space. The bead uptake was inhibited by cytochalasin D (CytD), an F-actin polymerization inhibitor, and agonists and antagonists of P2X7Rs apparently decreased the uptake. Spontaneous YO-PRO-1 uptake by ddY-mouse astrocytes was reduced by the agonists and antagonists of P2X7Rs, but not by CytD. Down-regulation of P2X7Rs using siRNA decreased the bead uptake by ddY-mouse astrocytes. In addition, compared to in the case of ddY-mouse astrocytes, SJL-mouse astrocytes exhibited higher YO-PRO-1 uptake activity, and their bead uptake was significantly greater. These findings suggest that resting astrocytes exhibit engulfing activity and that the activity is regulated, at least in part, by their P2X7Rs.  相似文献   

18.
Genetically-encoded calcium actuators (GECAs) stemmed from STIM1 have enabled optical activation of endogenous ORAI1 channels in both excitable and non-excitable tissues. These GECAs offer new non-invasive means to probe the structure-function relations of calcium channels and wirelessly control the behavior of awake mice.  相似文献   

19.
Scanning immunoelectron microscopy was applied to human endometrial epithelium for the first time to simultaneously determine epitope localisation and cellular architecture. The method was established using HMFG1, an antibody to a glycoform of the MUC1 mucin. This was chosen because of the potential importance of MUC1 in connection with endometrial receptivity. Biopsies of mid-secretory phase endometrium were labelled using HMFG1 and silver-enhanced, gold-conjugated secondary antibody was then visualised by back-scattered electron imaging. The method provided a highly specific localisation of the HMFG1 epitope to the ciliated and "ciliogenic" cells of the endometrial surface. In contrast, no reactivity was evident on the microvillous cells and endometrial pinopodes. The potential to integrate the study of the molecular and ultrastructural changes that occur in the endometrium by using scanning immunoelectron microscopy offers a powerful means of expanding our understanding of the adaptation of the endometrium in preparation for embryo implantation.  相似文献   

20.
Astrocytes respond to inflammatory stimuli and may be important modulators of the inflammatory response in the nervous system. This study aimed first to assess how astrocytes in primary culture behave in response to inflammatory stimuli concerning intracellular Ca(2+) responses, expression of Toll-like receptor 4 (TLR4), Na(+)/K(+)-ATPase, actin filament organization, and expression of cytokines. In a cell culture model with lipopolysaccharide (LPS), astrocyte response was assessed first in the acute phase and then after incubation with LPS for 1-48 h. The concentration curve for LPS-stimulated Ca(2+) responses was bell-shaped, and the astrocytes expressed TLR4, which detects LPS and evokes intracellular Ca(2+) transients. After a long incubation with LPS, TLR4 was up-regulated, LPS-evoked Ca(2+) transients were expressed as oscillations, Na(+)/K(+)-ATPase was down-regulated, and the actin filaments were disorganized. Interleukin-1β (IL-1β) release was increased after 24 h in LPS. A second aim was to try to restore the LPS-induced changes in astrocytes with substances that may have dose-dependent anti-inflammatory properties. Naloxone and ouabain were tested separately in ultralow or high concentrations. Both substances evoked intracellular Ca(2+) transients for all of the concentrations from 10(-15) up to 10(-4) M. Neither substance blocked the TLR4-evoked Ca(2+) responses. Naloxone and ouabain prevented the LPS-induced down-regulation of Na(+)/K(+)-ATPase and restored the actin filaments. Ouabain, in addition, reduced the IL-1β release from reactive astrocytes. Notably, ultralow concentrations (10(-12) M) of naloxone and ouabain showed these qualities. Ouabain seems to be more potent in these effects of the two tested substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号