首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The insulin receptor and insulin-like growth factor 1 receptor (IGF-1R), activated by their ligands, control metabolism, cell survival, and proliferation. Although the signaling pathways activated by these receptors are well characterized, regulation of their activity is poorly understood. To identify regulatory proteins we undertook a two-hybrid screen using the IGF-1R beta-chain as bait. This screen identified Receptor for Activated C Kinases (RACK1) as an IGF-1R-interacting protein. RACK1 also interacted with the IGF-1R in fibroblasts and MCF-7 cells and with endogenous insulin receptor in COS cells. Interaction with the IGF-1R did not require tyrosine kinase activity or receptor autophosphorylation but did require serine 1248 in the C terminus. Overexpression of RACK1 in either R+ fibroblasts or MCF-7 cells inhibited IGF-1-induced phosphorylation of Akt, whereas it enhanced phosphorylation of Erks and Jnks. Src, the p85 subunit of phosphatidylinositol 3-kinase, and SHP-2 were all associated with RACK1 in these cells. Interestingly, the proliferation of MCF-7 cells was enhanced by overexpression of RACK1, whereas IGF-1-mediated protection from etoposide killing was greatly reduced. Altogether the data indicate that RACK1 is an IGF-1R-interacting protein that can modulate receptor signaling and suggest that RACK1 has a particular role in regulating Akt activation and cell survival.  相似文献   

2.
3.
4.
5.
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.  相似文献   

6.
Zn2+ exerts insulin-mimetic and antidiabetic effects in rodent models of insulin resistance, and activates extracellular-signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key components of the insulin signaling pathway. Zn2+-induced signaling has been shown to be associated with an increase in the tyrosine phosphorylation of insulin receptor (IR), as well as of insulin-like growth factor 1 receptor (IGF-1R) and epidermal growth factor receptor (EGFR) in several cell types. However, the specific contribution of these receptor protein tyrosine kinases (R-PTKs) in mediating Zn2+-induced responses in a cell-specific fashion remains to be established. Therefore, using a series of pharmacological inhibitors and genetically engineered cells, we have investigated the roles of various R-PTKs in Zn2+-induced ERK1/2 and PKB phosphorylation. Pretreatment of Chinese hamster ovary (CHO) cells overexpressing a human IR (CHO-HIR cells) with AG1024, an inhibitor for IR protein tyrosine kinase (PTK) and IGF-1R-PTK, blocked Zn2+-induced ERK1/2 and PKB phosphorylation, but AG1478, an inhibitor for EGFR, was without effect in CHO cells. On the other hand, both of these inhibitors were able to attenuate Zn2+-induced phosphorylation of ERK1/2 and PKB in A10 vascular smooth muscle cells. In addition, in CHO cells overexpressing tyrosine kinase deficient IR, Zn2+ was still able to induce the phosphorylation of these two signaling molecules, whereas the insulin effect was significantly attenuated. Furthermore, both Zn2+ and insulin-like growth factor 1 failed to stimulate ERK1/2 and PKB phosphorylation in IGF-1R knockout cells. Also, Zn2+-induced responses in CHO-HIR cells were not associated with an increase in the tyrosine phosphorylation of the IR β-subunit and insulin receptor substrate 1 in CHO-HIR cells. Taken together, these data suggest that distinct R-PTKs mediate Zn2+-evoked ERK1/2 and PKB phosphorylation in a cell-specific manner.  相似文献   

7.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

8.
9.
Dual inhibitors of the closely related receptor tyrosine kinases insulin-like growth factor 1 receptor (IGF-1R) and insulin receptor (IR) are promising therapeutic agents in cancer. Here, we report an unusually selective class of dual inhibitors of IGF-1R and IR identified in a parallel screen of known kinase inhibitors against a panel of 300 human protein kinases. Biochemical and structural studies indicate that this class achieves its high selectivity by binding to the ATP-binding pocket of inactive, unphosphorylated IGF-1R/IR and stabilizing the activation loop in a native-like inactive conformation. One member of this compound family was originally reported as an inhibitor of the serine/threonine kinase ERK, a kinase that is distinct in the structure of its unphosphorylated/inactive form from IR/IGF-1R. Remarkably, this compound binds to the ATP-binding pocket of ERK in an entirely different conformation to that of IGF-1R/IR, explaining the potency against these two structurally distinct kinase families. These findings suggest a novel approach to polypharmacology in which two or more unrelated kinases are inhibited by a single compound that targets different conformations of each target kinase.  相似文献   

10.
RACK1 is an intracellular receptor for the serine/ threonine protein kinase C. Previously, we demonstrated that RACK1 also interacts with the Src protein-tyrosine kinase. RACK1, via its association with these protein kinases, may play a key role in signal transduction. To further characterize the Src-RACK1 interaction and to analyze mechanisms by which cross-talk occurs between the two RACK1-linked signaling kinases, we identified sites on Src and RACK1 that mediate their binding, and factors that regulate their interaction. We found that the interaction of Src and RACK1 is mediated, in part, by the SH2 domain of Src and by phosphotyrosines in the sixth WD repeat of RACK1, and is enhanced by serum or platelet-derived growth factor stimulation, protein kinase C activation, and tyrosine phosphorylation of RACK1. To the best of our knowledge, this is the first report of tyrosine phosphorylation of a member of the WD repeat family of proteins. We think that tyrosine phosphorylation of these proteins is an important mechanism of signal transduction in cells.  相似文献   

11.
Insulin receptor structure and its implications for the IGF-1 receptor   总被引:1,自引:0,他引:1  
The insulin receptor (isoforms IR-A and IR-B) and the type-I insulin-like growth factor receptor (IGF-1R) are homologous, multi-domain tyrosine kinases that bind insulin and IGF-1 with differing specificity. IR is involved in metabolic regulation and IGF-1R in normal growth and development. IR-A also binds IGF-2 with an affinity comparable to IGF-1R and, like the latter, is implicated in a range of cancers. The recent structure of the IR ectodomain dimer explains many features of ligand-receptor binding and provides insight into the structure of the intact ligand-binding site in both receptors. The structures of the L1-CR-L2 fragments of IR and IGF-1R reveal major differences in the regions that govern ligand specificity. The IR ectodomain X-ray structure raises doubts about that obtained by STEM reconstruction.  相似文献   

12.
Different cellular signal transduction cascades are affected by environmental stressors (UV-radiation, gamma-irradiation, hyperosmotic conditions, oxidants). In this study, we examined oxidative stress-evoked signal transduction pathways leading to activation of STATs in A431 carcinoma cells. Oxidative stress, initiated by addition of H2O2 (1-2 mM) to A431 cells, activates STAT3 and, to a lesser extent, STAT1 in dose- and time-dependent manner. Maximum phosphorylation levels were observed after a 2 minutes stimulation at 1-2 mM H2O2. Phosphorylation was blocked by AG1478, a pharmacological inhibitor of the epidermal growth factor receptor tyrosine kinase, implicating intrinsic EGF receptor tyrosine kinase in this process. Consistent with this observation, H2O2-stimulated EGFR tyrosine phosphorylation was abolished by specific Src kinase family inhibitor CGP77675, implicating Src in H2O2-induced EGFR activation. An essential role for Src and JAK2 in STATs activation was suggested by three findings. 1. Src kinase family inhibitor CGP77675 blocked STAT3 and STAT1 activation by H2O2 in a concentration-dependent manner. 2. In Src-/-fibroblasts, activation of both STAT3 and STAT1 by H2O2 was significantly attenuated. 3. Inhibiting JAK2 activity with the specific inhibitor AG490 reduced the level of H2O2-induced STAT3 phosphorylation, but not STAT1 in A431 cells. These data show essential roles for Src and JAK2 inactivation of STAT3. In contrast, H2O2-mediated activation of STAT1 requires only Src kinase activity. Herein, we postulate also that H2O2-induced STAT activation in carcinoma cells involves Src-dependent EGFR transactivation.  相似文献   

13.
14.
Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion.  相似文献   

15.
16.
Recent evidence indicates that STAT proteins can be activated by a variety of receptor and non-receptor protein-tyrosine kinases. Unlike cytokine-induced activation of STATs, where JAKs are known to play a pivotal role in phosphorylating STATs, the mechanism for receptor protein-tyrosine kinase-mediated activation of STATs remains elusive. In this study, we investigated the activation of STAT proteins by the insulin-like growth factor I receptor (IGF-IR) in vitro and in vivo and assessed the role of JAKs in the process of activation. We found that STAT3, but not STAT5, was activated in response to IGF-I in 293T cells cotransfected with IGF-IR and STAT expression vectors. Moreover, tyrosine phosphorylation of STAT3, JAK1, and JAK2 was increased upon IGF-I stimulation of endogenous IGF-IR in 293T cells transfected with the respective STAT or JAK expression vector. Supporting the observation in 293T cells, endogenous STAT3 was tyrosine-phosphorylated upon IGF-I stimulation in the muscle cell line C2C12 as well as in various embryonic and adult mouse organs during different stages of development. Dominant-negative JAK1 or JAK2 was able to block the IGF-IR-mediated tyrosine phosphorylation of STAT3 in 293T cells. A newly identified family of proteins called SOCS (suppressor of cytokine signaling), including SOCS1, SOCS2, SOCS3 and CIS, was able to inhibit the IGF-I-induced STAT3 activation as well with varying degrees of potency, in which SOCS1 and SOCS3 appeared to have the higher inhibitory ability. Inhibition of STAT3 activation by SOCS could be overcome by overexpression of native JAK1 and JAK2. We conclude that IGF-I/IGF-IR is able to mediate activation of STAT3 in vitro and in vivo and that JAKs are essential for the process of activation.  相似文献   

17.
Transactivation of epidermal growth factor receptor (EGFR) is a well-documented mechanism by which vasoactive peptides and H2O2 elicit their cellular responses. However, a role for the insulin-like growth factor type-1 receptor (IGF-1R) transactivation in mediating the effects of angiotensin II (Ang II) and H2O2 in vascular smooth muscle cells from different artery types have also been recently recognized. By using a series of pharmacological inhibitors of various growth factor receptor tyrosine kinases and a direct analysis of the phosphorylation status of the beta-subunit of IGF-1R, a requirement of this growth factor receptor in Ang II and H2O2 response has been demonstrated. This review discusses some of the studies that highlight the importance of IGF-1R transactivation in mediating Ang II- and H2O2-induced mitogen-activated protein kinase and protein kinase B signaling pathways.  相似文献   

18.
Ligand-induced receptor-mediated endocytosis plays a central role in regulating signaling conveyed by tyrosine kinase receptors. This process depends on the recruitment of the adaptor protein 2 (AP-2) complex, clathrin, dynamin, and other accessory proteins to the ligand-bound receptor. We show here that besides AP-2 and clathrin, two other proteins participate in the endocytic process of the insulin-like growth factor receptor (IGF-1R); they are EHD1, an Eps15 homology (EH) domain-containing protein 1, and SNAP29, a synaptosomal-associated protein. EHD1 and SNAP29 form complexes with alpha-adaptin of AP-2 and co-localize in endocytic vesicles, indicating a role for them in endocytosis. EHD1 and SNAP29 interact directly with each other and are present in complexes with IGF-1R. After IGF-1 induction, EHD1 and IGF-1R co-localize intracellularly. Overexpression of EHD1 in Chinese hamster ovary cells represses IGF-1-mediated signaling, as measured by mitogen-activated protein kinase phosphorylation and Akt phosphorylation, indicating that EHD1 plays a role as a down-regulator in IGF-1 signaling pathway.  相似文献   

19.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

20.
Zheng Y  Zhang L  Jia X  Wang H  Hu Y 《FEBS letters》2012,586(2):122-126
In this study, the evolutionarily conserved intracellular adaptor protein, receptor of activated C kinase 1 (RACK1) was identified as a novel interaction partner of protein inhibitor of activated STAT 2 (PIAS2) using a yeast two-hybrid screening system. The direct interaction and co-localization of RACK1 with PIAS2 was confirmed by immunoprecipitation and immunofluorescence staining analysis, respectively. The 5th to 7th Trp-Asp 40 (5-7 WD40) repeats of RACK1 were identified as the minimal domain required for interaction with PIAS2 by deletion analysis. Furthermore, multiple PIAS2-domains, particularly the 'PINIT' and RLD domains, bind the RACK1 5-7 WD40 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号