首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The spermidine synthesis inhibitors methylglyoxal bis-(guanylhydrazone) (MGBG) and dicyclohexylammonium sulfate (DCHA) were found to reduce growth and embryogenesis in wild carrot cultures. Cellular polyamine levels were also affected by the inhibitors, with spermidine levels being especially reduced by DCHA. Similarly, MGBG reduced organogenetic development of shoots on excised aspen hypocotyls. These data suggest that the polyamines, especially spermidine, play an important role in the growth and development of plants.  相似文献   

2.
An attempt was made to identify some of the hormonal factors that control adventitious root formation in our Prunus avium micropropagation system in order to improve rooting in difficult-to-root genotypes. Changes in endogenous contents of free polyamines were determined at intervals during auxin-induced rooting of shoot cultures. Accumulation of putrescine and spermidine peaked between days 9 and 11. Spermine was only present in traces, Exogenously supplied putrescine or spermine (50-500 μM), in the presence of optimal or suboptimal levels of indolebutyric acid (IBA), had no effect on rooting percentage or root density, except for spermine at 500 μM. At this external concentration spermine caused a substantial accumulation in both free spermine and putrescine. The use of several inhibitors of polyamine biosynthesis, namely α-difluoromethylornithine (DFMO), α-difluoromethylarginine (DFMA), dicyclohexylammonium sulphate (DCHA) and methylglyoxal-bis-guanyl-hydrazone (MGBG) alone or in combination in the 0.1 to 5 μM range, resulted in an inhibition of rooting that was partially reversed by the addition of the corresponding polyamine. Cellular polyamine levels were significantly reduced by DFMO and DFMA but not by DCHA and MGBG, Labeled putrescine incorporation into spermidine increased somewhat in the presence of the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). A system based on [3,4-14C]methionine incorporation was used to measure ethylene synthesis by the in vitro cultured shoots. Label incorporation was drastically reduced by 10 μM AVG and increased 3.5-fold in the presence of 50 μM IBA with respect to controls (no IBA). Labeled methionine incorporation into spermidine increased to some extent when ethylene synthesis was inhibited by AVG. Adding the ethylene precursor 1-aminocyclopropane-l-carboxylic acid (ACC) to the rooting medium significantly inhibited rooting percentage; AVG caused the formation of a greater number of roots per shoot but delayed their growth. Supplying the shoots with both compounds resulted in an intermediate rooting response, in which both rooting percentage and root density were affected. These results indicate that polyamines may play a significant role at least in some stages of root formation. The polyamine and ethylene biosynthetic pathways seem to be competitive but under our conditions, the enhancement of one pathway when the other was inhibited, was not dramatic. Although IBA promoted ethylene synthesis, AVG, which drastically reduced it, also promoted root formation. Thus, the auxin effect on root induction cannot be directly related to its ability to enhance ethylene synthesis.  相似文献   

3.
The spermidine synthesis inhibitor methyl bis-(guanylhydrazone) was found to reduce spore germination, hyphal and mycelial growth in Alternaria consortiale. The addition of spermidine to the culture medium resulted in a promotion of growth. Methyl bis-guanylhydrazone and spermidine did not change ethylene production.The data suggest that spermidine plays a role in the development of Alternaria consortiale independent of ethylene.Abbreviations MGBG methyl bis-(guanylhydrazone) - SPD spermidine - ACC 1-aminocyclopropane-1-carboxylic acid - PDA potato dextrose agar  相似文献   

4.
The effects of methylglyoxal-bis(guanylhydrazone) (MGBG), an inhibitor of polyamine biosynthesis were studied on tuberization and cellular polyamine content using in vitro Solanum tuberosum (cv Binjte) plants. When MGBG was added to the culture medium, it produced a partial inhibition of the growth of stems and leaves; it totally blocked rhizogenesis and strongly stimulated tuber formation. Morphogenetic effects of MGBG were correlated to a 40 % decrease in free putrescine, spermidine, spermine content of the leaves and to a 28 % decrease in spermidine titer of the stems. In the tubers, this inhibitor did not change the free polyamine titer but increased by up to 85 % the titer of conjugated putrescine, spermidine, spermine. When the plants were grown in the dark, MGBG produced, like benzyladenine, a stimulation of the rate of tuberization and enhanced the content of conjugated polyamines in the tuber. These results support the hypothesis that polyamines play an important role in the morphogenesis of potato plants. The role of polyamine conjugation in tuber development is discussed.  相似文献   

5.
Daily administration of dicyclohexylamine (DCHA), an inhibitor of spermidine synthase, to neonatal rats produced a dose-dependent depletion of brain spermidine, accompanied by a rise in putrescine and spermine. Despite continued DCHA treatment, levels of all three polyamines returned toward normal within two weeks. alpha-Difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, had a much more profound and persistent effect on spermidine and also depleted putrescine throughout drug administration; furthermore, DFMO prevented both the elevation of putrescine caused by DCHA and the eventual restitution of spermidine levels. Although a similar pattern of effects was seen in the heart, the time course of onset of DCHA-induced alterations in polyamine levels and the rapidity of subsequent adaptation were considerably different from those in brain. The net activity of DCHA toward polyamines in developing tissues thus involves the direct actions of the drug on spermidine synthesis in combination with compensatory metabolic adjustments made by each tissue to polyamine depletion.  相似文献   

6.
The ability of two known inhibitors of polyamine synthesis,-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC), and cyclohexylamine, an inhibitor of spermidine synthase, to inhibit thein vitro growth and polyamine synthesis of clinical isolates ofCryptococcus neoformans was examined. Treatment ofC. neoformans with either DFMO or cyclohexylamine resulted in depletion of cellular polyamines and inhibition of growth.Cryptococcus neoformans was shown to lack detectable spermine and to require high concentrations of spermidine, but not putrescine, for growth. The growth inhibition by DFMO and cyclohexylamine was reversed by exogenous polyamines. These findings document the ability of cyclohexylamine and DFMO to inhibit polyamine synthesis and growth in clinically important isolates ofC. neoformans.  相似文献   

7.
8.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

9.
Polyamine content and the activities of their main biosynthetic enzymes, ornithine decarboxylase (ODC, EC 4.1.1.17), arginine decarboxylase (ADC, EC 4.1.1.19), S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50), and arginase (EC 3.5.3.1.), were examined in crude extracts of Helianthus tuberosus tuber slices during the first synchronous cell cycle, induced by synthetic auxin, with or without the addition of 1 or 5 millimolar dicyclohexylamine (DCHA), an inhibitor of spermidine synthase. In the DCHA-treated slices a peak of accumulation of the drug was observed at 12 hours. Bound DCHA was also found. Free polyamine content generally increased, reaching a maximum at 12 to 18 hours in the S phase of the cycle; while spermidine content was decreased slightly with DCHA after 12 hours, putrescine almost doubled at 18 hours. Bound polyamines were also present. ODC and ADC showed a maximum activity at 15 and 18 to 21 hours, respectively, i.e. in the S phase; both activities increased slightly in the presence of 5 millimolar DCHA at or near the time of maximum activity. Arginase was initially very high and then rapidly decreased although a small peak of activity occurred at 15 hours. SAMDC, which had two peaks of activity, was initially inhibited by DCHA, and then stimulated, especially at 12 hours and in coincidence with the main peak, at 21 hours. Thus ODC, ADC, and SAMDC activities as well as polyamine titer increased before and during the S phase of the cell cycle and all declined during cell division. The slight inhibitory effect of DCHA was possibly due to its degradation in the tissue and to the fact that putrescine could substitute for the function(s) of spermidine.  相似文献   

10.
We have previously reported that aseptically cultured mesophyll protoplasts of Vigna divide rapidly and regenerate into complete plants, while mesophyll protoplasts of Avena divide only sporadically and senesce rapidly after isolation. We measured polyamine titers in such cultures of Vigna and Avena, to study possible correlations between polyamines and cellular behavior. We also deliberately altered polyamine titer by the use of selective inhibitors of polyamine biosynthesis, noting the effects on internal polyamine titer, cell division activity and regenerative events.In Vigna cultures, levels of free and bound putrescine and spermidine increased dramatically as cell division and differentiation progressed. The increase in bound polyamines was largest in embryoid-forming callus tissue while free polyamine titer was highest in root-forming callus. In Avena cultures, the levels of total polyamines decreased as the protoplast senesced. The presence of the inhibitors -difluoromethyl-arginine (specific inhibitor of arginine decarboxylase) and dicyclohexylamine (inhibitor of spermidine synthase) reduced cell division and organogenesis in Vigna cultures. Addition of low concentration of polyamines to such cultures containing inhibitors or removal of inhibitors from the culture medium restored the progress of growth and differentiation with concomitant increase in polyamine levels.  相似文献   

11.
Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm ) combined with or without Si (0.83 mm ). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na+ accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1‐aminocyclopropane‐1‐carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up‐regulated by Si under salt stress. To further confirm the role of PA in Si‐mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si‐enhanced salt tolerance and the beneficial effect of Si in decreasing Na+ accumulation. These results indicate that PAs and ACC are involved in Si‐induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance.  相似文献   

12.
Exogenous spermidine (Spd) and methylglyoxal bis(guanylhydrazone) (MGBG), a putative inhibitor of Spd synthesis, improved somatic embryo formation of Scots pine (Pinus sylvestris L.). The induced maturation due to MGBG and Spd was accompanied by significantly retarded proliferation growth and by reduction in the concentration of free polyamines compared to the control cultures. The action of MGBG revealed that it has a non-specific effect on the whole polyamine metabolism of Scots pine. Furthermore, at certain concentrations it may induce plant differentiation as well.  相似文献   

13.
14.
Comparative studies on the effect of temperature treatment on the endogenous polyamine content in wild type and the ethylene insensitive mutant eti5 of Arabidopsis thaliana (L.) Heynh were performed. The levels of free and conjugated putrescine, spermidine and spermine were measured in rosette leaves of 38-day-old plants subjected to low and high temperature for 24 h in darkness. Data for fractions measured in treated wild type plants during recovery suggest that alterations in polyamine levels may be a consequence of the conversion of the supernatant-bound into free form and vice versa, while in treated eti5 plants de novo synthesis of spermidine and spermine could not be excluded. It was found that high temperature provoked more significant changes in polyamine levels than low temperature. The results suggest that the eti5 mutant showed a better ability to recover after the temperature treatments than wild type partly as a consequence of changes in polyamine content.  相似文献   

15.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   

16.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

17.
18.
The administration of bis-cyclohexylammonium sulfate (BCHS), a spermidine synthase inhibitor, to in vitro cultures of chick embryo fibroblasts caused a decrease in cellular spermidine levels and an increase in putrescine and spermine. Cell proliferation rate and DNA synthesis were also inhibited. As protein synthesis did not change, it would seem that low levels of cellular spermidine inhibit cell growth depressing DNA synthesis.  相似文献   

19.
In the present paper, correlation between free polyamines and growth of peach (Prunus persica cv. Yuzora) in vitro callus was investigated. Growth of the callus was divided into three phases based on measurement of fresh weight. Free polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), could be detected during peach callus growth. Changes in free Put titers followed the callus growth rate, as shown by low and stable levels in the first stage, quick increase at the beginning of the second phase, and slow increase in the last phase, whereas fluctuations of Spd and Spm titers were aberrant from that of Put at early stage. Expressions of five key genes involved in polyamine biosynthesis were characterized, in which only the genes leading to Put synthesis, ADC (arginine decarboxylase) and ODC (ornithine decarboxylase), agreed with callus growth and fluctuation of Put titers. Treatment of the callus with D-arginine, an inhibitor of ADC, led to significant growth inhibition and enormous reduction of endogenous Put, coupled with obvious decrease of mRNA levels of ADC and ODC. Exogenous application of Put partially restored the callus growth, along with resumption of endogenous Put and expression levels of ADC and ODC. Spd and Spm titers experienced minor change in comparison to Put. The data presented here suggested that free Put played an important part in peach callus growth. Putative mechanisms or mode of action underlying the role of Put in peach callus growth and different expression patterns of the genes responsible for polyamine biosynthesis are also discussed.  相似文献   

20.
In mulberry (Morus alba L.) plants NaCl stress imposed through roots by irrigation during growth period decreased the net photosynthetic rate (NPR), physiological water use efficiency (pWUE), which ultimately reflected on the reduction of growth parameters and leaf yield. Foliar spray of kinetin and spermidine (both at 1 mM) on salinized plants reduced the detrimental effects of saline stress. Kinetin and spermidine sprayed plants increased the total chlorophyll, protein content, as well as leaf yield, but reduced the sugar and proline contents as compared to NaCl treated plants. Kinetin was more effective than spermidine in increasing NPR, pWUE and leaf yield both in nonsalinized and salinized condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号