首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local adaptations to environmental conditions are of high ecological importance as they determine distribution ranges and likely affect species responses to climate change. Increased environmental stress (warming, extreme drought) due to climate change in combination with decreased genetic mixing due to isolation may lead to stronger local adaptations of geographically marginal than central populations. We experimentally observed local adaptations of three marginal and four central populations of Fagus sylvatica L., the dominant native forest tree, to frost over winter and in spring (late frost). We determined frost hardiness of buds and roots by the relative electrolyte leakage in two common garden experiments. The experiment at the cold site included a continuous warming treatment; the experiment at the warm site included a preceding summer drought manipulation. In both experiments, we found evidence for local adaptation to frost, with stronger signs of local adaptation in marginal populations. Winter frost killed many of the potted individuals at the cold site, with higher survival in the warming treatment and in those populations originating from colder environments. However, we found no difference in winter frost tolerance of buds among populations, implying that bud survival was not the main cue for mortality. Bud late frost tolerance in April differed between populations at the warm site, mainly because of phenological differences in bud break. Increased spring frost tolerance of plants which had experienced drought stress in the preceding summer could also be explained by shifts in phenology. Stronger local adaptations to climate in geographically marginal than central populations imply the potential for adaptation to climate at range edges. In times of climate change, however, it needs to be tested whether locally adapted populations at range margins can successfully adapt further to changing conditions.  相似文献   

2.
Summary In a twin study, we have shown that wild emmer wheat, Triticum dicoccoides, the progenitor of all cultivated wheats, harbours important genetic variation (Vg) in photosynthetic characteristics. This Vg resides within and between populations and ecogeographical regions in Israel, which is the center of origin and diversity of wild emmer wheat. Here we analyzed, by univariate and multivariate methods, the significant differentiation of variation in photosynthetic characteristics of 107 genotypes from 27 populations of wild emmer in Israel, distributed in three ecogeographical regions including central, xeric (northern cold and eastern warm) marginal, and mesic (western) marginal populations. The highest photosynthetic efficiency was displayed by populations of the xeric marginal region, but most variation for photosynthetic capacity occurs between accessions within ecogeographical regions and populations. Genotypes and populations of T. dicoccoides having high photosynthetic capacity can be identified by climatic factors and isozyme markers. The identification by genetic markers, if substantiated by testcrosses, can facilitate the maximization of conservation, in situ or ex situ, and utilization of these photosynthetic genetic resources for improvement of hexaploid wheat (T. aestivum).  相似文献   

3.
Understanding the survival capacity of forest trees to periods of severe water stress could improve knowledge of the adaptive potential of different species under future climatic scenarios. In long lived organisms, like forest trees, the combination of induced osmotic stress treatments and field testing can elucidate the role of drought tolerance during the early stages of establishment, the most critical in the life of the species. We performed a Polyethylene glycol-osmotic induced stress experiment and evaluated two common garden experiments (xeric and mesic sites) to test for survival and growth of a wide range clonal collection of Maritime pine. This study demonstrates the importance of additive vs non additive effects for drought tolerance traits in Pinus pinaster, and shows differences in parameters determining the adaptive trajectories of populations and family and clones within populations. The results show that osmotic adjustment plays an important role in population variation, while biomass allocation and hydric content greatly influence survival at population level. Survival in the induced osmotic stress experiment presented significant correlations with survival in the xeric site, and height growth at the mesic site, at population level, indicating constraints of adaptation for those traits, while at the within population level no significant correlation existed. These results demonstrate that population differentiation and within population genetic variation for drought tolerance follow different patterns.  相似文献   

4.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

5.
Fire is the most important disturbance factor in Cypress (Austrocedrus chilensis) forests in Patagonia, Argentina. This ecosystem recovers poorly after fire, and direct sowing could be a potentially useful restoration practice. To evaluate the effect of season of sowing, post‐fire plant cover (PC), and climatic variability on seedling emergence and survival, three direct sowing studies were established in two burned cypress stands: Trevelin (xeric conditions) and El Bolsón (mesic conditions). Two studies were conducted in winter (2000 and 2001) and one in spring (2001). Precipitation was higher than the mean during the 2000–2001 growing season and lower during 2001–2002. At both sites, emergence and survival were much higher for winter‐ than for spring‐sown seedlings. In the xeric stand, emergence and survival of winter‐sown seedlings increased with medium and high PC values, after the humid and dry summers, respectively. However, most spring‐sown seedlings did not emerge, and those that did were short‐lived. Because of the more favorable growing conditions in the mesic stand, PC had no effect on emergence and only favored first year survival of winter‐sown seedlings after the dry summer. Spring‐sown seedlings showed no association with PC in the mesic site, probably because the first summer was exceptionally humid. We speculate that shading plants exert a positive effect on cypress seedling establishment, likely by reducing the stress from high temperatures and low water availability. Sowing of small patches under the protection of understory vegetation could be useful in restoring burned cypress stands.  相似文献   

6.

Key message

A drought event during spring produces a stronger and long lasting decrease in growth of ponderosa pine seedlings than a summer drought event. However, survival is not differentially affected.

Abstract

Although there is certainty about the increasing frequency of extreme climatic events, the consequences of changing patterns of drought events within the growing season on the growth and survival of different species are much less certain. In particular, little knowledge is available on the differential effect on tree seedlings of a drought event at different times within the growing season. The objective of this study was to quantify the effect of a drought event imposed at different times over the growing season on the growth, survival and some related morphological and physiological variables of Pinus ponderosa seedlings from two seed sources. Four treatments were applied: control conditions; spring drought; summer drought and spring plus summer drought (SpSuD). A drought event in spring reduced stem growth and biomass accumulation in ponderosa pine seedlings during the occurrence of the drought and afterwards, even when plant water status had recovered. The lack of growth recovery could not be associated with loss of stem hydraulic conductivity or reduction in stomatal conductance after drought. However, the spring drought did not differentially affect plant survival, as was the case with prolonged drought in the SpSuD treatment. The summer drought event had a significant but much smaller impact on plant growth. Our results suggest different consequences of a drought event in spring or in summer in ponderosa pine seedlings. This knowledge may be relevant to understand and predict tree seedlings responses to changing patterns of drought events within the growing season in the framework of climatic change.  相似文献   

7.
Ongoing climate change has induced modification in the frequency and intensity of extreme climatic events, with consequent impact on tree and forest growth resilience. Araucaria araucana is an endangered Patagonian conifer, which provides several ecosystem services to local human societies and plays fundamental ecological roles in natural communities. These woodlands have historically suffered different types of anthropogenic disturbance, such as fire, logging and grazing, nevertheless the species resilience to extreme drought events remains still poorly understood. To fill this gap of knowledge, we applied dendrochronological methods to several A. araucana stands distributed along a steep bioclimatic gradient in order to reconstruct resilience capacity, in term of stem growth resistance and recovery, to three successive extreme spring-early summer droughts which occurred during the 20th century. Results showed an increase in the species recovery along the considered dry spells, whereas no clear trend emerged for resistance, suggesting no cumulative effect of drought upon resilience. Both resistance and recovery presented different values depending on bioclimatic settings, being xeric stands more sensitive to extreme episodes with respect to mesic woodlands, particularly during the more recent drought event when trees growing in drier environments were not able to reach pre-drought stem growth rates. Tree-level characteristics, such as age and growth trends prior to drought, modulated the species resilience, suggesting that future dry spells would possibly induce shifts in population dynamics, and furthermore be detrimental for fast-growing trees. Our analysis highlighted the response of a key Patagonian tree species to extreme drought events, providing bioclimatic-specific useful information for conservation plans of this natural resource.  相似文献   

8.
Understanding the response of long-lived species to natural climatic variability at multiple scales is a prerequisite for forecasting ecosystem responses to global climate change. This study investigated the response of piñon pine (Pinus edulis) to natural climatic variability using information on physiology and growth as recorded in leaves and tree rings. δ13C of annual leaf cohorts (δ13Cleaf) and tree rings (δ13Cring) were measured at an ecotonal/xeric site and a mid-range/mesic site. Ring width indices (RWI) were used to estimate annual growth of individual trees. Relationships between seasonal and annual climate parameters and δ13C and growth were investigated. δ13C–climate relationships were stronger for δ13Cleaf than for δ13Cring especially at the xeric site. The mean monthly maximum summer temperatures over May through September (summer T max) had the strongest influence on δ13Cleaf. There was a strong negative relationship between RWI with summer T max and a strong positive relationship between RWI with October to October precipitation (water–year PPN) at both sites. This suggests that piñon pine populations could be vulnerable to decreased growth and, perhaps mortality, in response to warmer, drier conditions predicted by models of global climate change.  相似文献   

9.
The Irano-Turanian distribution zone in the Levant crossroad is fragmented along different phyto- and zoogeographic and climatic regions, a relict of wider distribution in moister conditions during the Pleistocene and the Holocene. We examined the effect of the disjunct Irano-Turanian distribution among distinct mesic and xeric habitats on the genetic structure of the gall-forming aphid Slavum wertheimae and its obligate host tree Pistacia atlantica in Israel and Jordan. The genetic study included amplified fragment length polymorphism analysis of the trees and aphids and sequence analysis of fragments of the mitochondrial genes cytochrome oxidase I and II (COI and COII) of the aphids. P. atlantica trees did not show any differentiation or genetic structure among climatic regions. S. wertheimae aphids in Israel exhibited two distinct phylogenetic groups, one occupying the mesic region in the north and the other inhabiting the xeric south. The Jordanian aphids clustered within the Israeli northern populations. The results suggest that while the fragmented Irano-Turanian distribution in the Levant does not affect the genetic structure of P. atlantica trees, it promotes genetic differentiation among the aphids?? populations and may initiate an allopatric speciation.  相似文献   

10.
Extreme climatic events have the potential to affect plant communities around the world, and especially in the Mediterranean basin, where the frequency of milder and drier summers is expected to be altered under a global-change scenario. We experimentally investigated the effect of three contrasting climatic scenarios on the diversity and abundance of the natural woody-recruit bank among three characteristic habitats in a Mediterranean-type ecosystem: forest, shrubland, and bare soil. The climatic scenarios were dry summers (30% summer rainfall reduction), wet summers (simulating summer storms), and current climatic conditions (control). Seedling emergence and survival after the first summer was recorded during 4 consecutive years. The wet summer boosted abundance and diversity at emergence and summer survival, rendering the highest Shannon H??index. By contrast, the dry summer had no effect on emergence, although survival tended to decline. Nonetheless, the habitat had a key role, bare soil showing almost null recruitment whatever the climatic scenario, and forest keeping the highest diversity in all of them. Our results show that recruit-bank density and diversity depends heavily on extreme climatic events. Community dynamics will depend not only on increased drought but also on the balance between dry and wet years.  相似文献   

11.
Habitat fragmentation may affect trait evolution in plants through changes in the environment. Evolutionary change, however, may be limited when fragmented populations suffer from genetic or environmental deterioration. In this study, we examined the potential of plants in fragmented populations to respond to altered selective pressures by estimating the amount of heritable variation in several phenotypic traits, using Phyteuma spicatum as study species. We grew offspring of plants of ten natural populations of varying size under common environmental conditions and assessed if population trait means or heritability estimates were related to the size and abiotic environmental conditions of the populations of origin. All traits differed significantly among populations and maternal families, suggesting that genetic effects were responsible for the observed trait variation. Narrow-sense heritabilities (h 2 ) ranged between 0 and 1.13, depending on trait and population of origin. Size and/or environmental conditions of the populations of origin affected means and h 2 -estimates of some of the measured traits. Heritabilities for flowering duration and mean seed mass decreased with decreasing population size, suggesting that plants in small populations may have a reduced capacity to respond and adapt to changes in the environment which alter selective pressures on these traits. Still, mean h 2 -estimates were in some cases low, and patterns were generally quite variable. Further studies are therefore needed to gain more conclusive insights into the adaptive potential of small plant populations. Such knowledge is important if we want to understand how habitat fragmentation and associated changes in the environment affect trait evolution.  相似文献   

12.
The present study attempts to elucidate possible microevolutionary adaptations of life-history traits of high-latitude populations of the holarctic, littoral oribatid mite Ameronothrus lineatus by comparing arctic and temperate populations. Additionally, the paper provides an overview of the limited research on general ecology and population biology of arctic populations. In the Arctic the larviparous A. lineatus has a 5-year life cycle (larva-to-larva), and adults survive a further 2–3 years. High survival to maturity is consistent with a low lifetime reproductive output of ca. 20 larvae. The life history can be regarded as an extreme version of the typical oribatid life history. However, several life-history features suggest specific adaptations of arctic populations. In particular, the pre-moult resting stage is synchronized with the warmest part of the arctic summer, which shortens this vulnerable part of development. High reproductive investment by females at relatively low temperatures may represent a physiological adaptation to the cool arctic summer. Finally, prolonged cold exposure positively affects reproduction and survival the following summer, suggesting adaptation of the species to the highly seasonal arctic environment. On the other hand, the ability of all life-cycle stages to overwinter, and a flexible life history with the species being able to take advantage of favourable climatic conditions to accelerate development and larviposition, seem to be ancestral features. Thus, the success of A. lineatus in arctic habitats is probably attributable to a combination of derived and ancestral life-history traits. Studies of conspecific temperate populations are required to elucidate further local adaptations of arctic populations.  相似文献   

13.
In anticipation of more severe summer droughts, forestry in temperate Europe is searching for drought-resistant ecotypes of native tree species that might maintain ecosystem services in the future. We investigated how spring precipitation and soil conditions interact with summer drought and affect the establishment of conifer seedlings from different climatic origin. Emergence, establishment and subsequent performance of seedlings originating from autochthonous, Central Alpine, continental Eastern European, and Mediterranean Pinus sylvestris and Picea abies populations were studied in the dry Alpine Rhine valley, Switzerland, at three sites with differing soil water holding capacities and in 3 years with contrasting weather conditions. In addition to this natural inter-annual variation, precipitation was manipulated within sites with throughfall reduction roofs. Seedling establishment and growth were principally affected by the spring weather in the year of emergence. In years with average to positive spring water balance, seedlings grown at the site with the highest water holding capacity had 2–5 times more aboveground biomass than seedlings grown at sites with less favourable soils. Effects of seed origin were marginal and only detectable at the drier sites: contrary to our expectations, seedlings from the Central Alpine Rhone valley, where the climatic spring water deficit is large, outperformed those from the Mediterranean. Consequently, plantation of non-native populations from dryer origin will mitigate the effects of increased summer drought at driest sites only, while the inter-annual variability of spring precipitation will continue to enable temperate conifers to regenerate on a wide range of forest soils independent of seed origin.  相似文献   

14.
The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.  相似文献   

15.
Quantitative genetic studies in natural populations are of growing interest to speciation research since divergence is often believed to arise through micro-evolutionary change, caused by natural selection on functional morphological traits. The species flock of cichlid fishes in Africa’s oldest lake, Lake Tanganyika, offers a rare opportunity to study this process. Using the cichlid species Tropheus moorii, we assessed the potential for microevolution in a set of morphological traits by estimating their quantitative genetic basis of variation. Two approaches were employed: (1) estimation of trait heritabilities (h 2) in situ from a sample of wild caught fish, and (2) estimation of h 2 from first generation offspring produced in a semi-natural breeding experiment. In both cases, microsatellite data were used to infer pedigree structure among the sampled individuals and estimates of h 2 were made using an animal model approach. Although power was limited by the pedigree structures estimated (particularly in the wild caught sample), we nonetheless demonstrate the presence of significant additive genetic variance for aspects of morphology that, in the cichlid species Tropheus moorii, are expected to be functionally and ecologically important, and therefore likely targets of natural selection. We hypothesize that traits showing significant additive genetic variance, such as the mouth position have most likely played a key role in the adaptive evolution of the cichlid fish Tropheus moorii.  相似文献   

16.
The planktonic copepod Acartia hudsonica apparently requires summer diapause or dormancy to persist in Narragansett Bay, RI. In estuaries to the north, however, active A. hudsonica populations are present year-round and may not express dormancy. Using a full-sibling rearing design and analysis of variance (ANOVA), I assessed the importance of phenotypic and genetic sources of variation in two geographically separate populations, one from Maine and one from Rhode Island. Both populations showed phenotypic plasticity in the percentage of dormant eggs produced. Moreover, experiments revealed significant sibship-environment interactions in both populations, indicating that the phenotypic plasticity has a genetic component. Both populations also revealed a significant amount of genetic variation in the percentage of dormant eggs produced. For the Maine population, broad sense heritability was high (0.91, 1.10) in two short-day (12L:12D) treatments and near zero (0.08) in the long-day treatment (15L:9D). For a Rhode Island population, broad sense heritability was higher (0.95) in a low-temperature short-day treatment (13.5 °C, 12L:12D) than in a high-temperature short-day treatment (17.5 °C, 12L:12D; h2=0.25).  相似文献   

17.
It has been hypothesized that populations at the margins of the distributional range of a species show reduced genetic diversity and increased inter-population differentiation compared to central populations. Here, we test this hypothesis by examining the structure of genetic diversity in marginal populations of black poplar, Populus nigra L. (Salicaceae). This species occurs mainly in Europe but its range extends to central Asia. We collected 117 individuals from 10 populations at the edge of the distributional range of the species in central Asia to examine the structure of genetic diversity based on genetic polymorphisms at 20 microsatellite markers. As expected, the genetic diversity within these marginal populations is relatively low, with an average observed heterozygosity Ho of 0.337 and an average expected heterozygosity He of 0.466, compared to the genetic diversity of populations from central distributions. However, we recovered very low genetic differentiation between populations, with an average Fst of 0.0745, a value similar to those reported for central populations. AMOVA analyses confirmed this result, showing that only 9.2% of the total variation could be attributed to between-population variance (P < 0.001). Our findings do not fully support hypotheses about the structure of genetic diversity in marginal populations formed from observations on other species. We suggest that a high rate of outcrossing and possible postglacial colonization at the edge of the distributional range of this long-lived poplar may explain the observed structure of the genetic diversity.  相似文献   

18.
We found relatively high heritabilities in the narrow sense for seven of eight meristic characters in a population of rainbow trout using regression of mean progeny values on mid-parent values. In sharp contrast, there is no statistically significant additive genetic variance controlling developmental stability, as measured by fluctuating asymmetry (h2 = 0.02). However, there is a significant correlation between the average heterozygosity of each family at isozyme loci and the average number of asymmetric traits per individual. We have previously reported a strong correlation between heterozygosity at protein loci and decreased fluctuating asymmetry in this and other salmonid populations. Thus, there is little or no additive, but substantial dominance, genetic variation affecting fluctuating asymmetry. This suggests that there has been directional selection for increased developmental stability.  相似文献   

19.
Our goal was to establish the tolerance to flooding and drought of seedlings from a hydric gradient of different seed sources to provide recommendations for forest restoration in the face of climate change. We used Drimys winteri var. chilensis, a tree species that grows from extreme arid zones to wetlands along Chile, as the study subject. We expected that seedlings of xeric origin would perform better in drought conditions than populations from moist environments, and vice versa for flooding tolerance. We collected D. winteri seeds from xeric, mesic and wet environments. Seedlings at two development stages were submitted to an extreme flooding and drought treatment during 2 or 4 months in a common garden. After the flooding and drought assays finished, the number of surviving and damaged seedlings, lenticels and adventitious root presence, height, new leaves and specific leaf area, shoot/root ratio, water potential and/or chlorophyll fluorescence (Fv/Fm), were recorded. We found that flooding and drought affected almost all the parameters studied negatively. The xeric population seedlings, at both development stages studied, were the most tolerant to the drought and, unexpectedly, also to the flooding treatment. We recommend restoring with seedlings of xeric origin especially in arid areas where sudden flooding is frequent, as occurs in the Andes Mountains. In the face of climate change, we recommend carrying out common garden and field studies before advising which population origin should be used for restoration, since they do not always respond in accordance with expected patterns of local adaptation.  相似文献   

20.
Hydraulic failure can cause massive die-back of forest trees during drought. With extreme climatic events set to become more frequent and severe due to climatic change, it is essential to study resistance to water stress-induced cavitation. We investigated the genetic differentiation for cavitation resistance among Pinus hartwegii populations, the pine species growing at the treeline in México. Open-pollinated seeds were collected from seven natural populations along an altitudinal gradient (3,150–3,650 masl) from Pico de Tancítaro, Michoacán, western México. Seedlings were raised in a nursery and then established in a randomized complete block design in a common garden experiment. Resistance to cavitation (P 50, xylem pressure inducing 50 % loss of hydraulic conductance and S, slope of the vulnerability curve) and specific hydraulic conductivity (k s), were evaluated on branches of 5-year-old seedlings using the Cavitron technique. Mean P 50 was ?3.42 ± 0.05 MPa, indicating that Pinus hartwegii is one of the more vulnerable pine species to cavitation. No significant genetic differentiation was detected between populations for cavitation resistance traits (P 50 and S), but a significant altitudinal cline was found for S. In contrast, k s exhibited a significant differentiation among populations and a significant decline with increasing altitude. The lack of genetic differentiation among P. hartwegii populations for cavitation resistance is likely to represent a limitation for adapting to the warmer and drier climates that are expected to occur in México under climatic change. Finally, a worldwide comparison within the Pinus genus showed that pines growing at the treeline were on average more vulnerable to cavitation than those from lowland. This might reflect an adaptation to dry environmental conditions at low elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号