首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Darwin's northern suburbs border an extensive coastal reed and upper mangrove wetland recognized as an important larval habitat for Aedes vigilax (Skuse), the northern salt marsh mosquito, an established vector for Ross River and Barmah Forest viruses and an appreciable pest species. We sought to identify the most important vegetation categories associated with Ae. vigilax breeding to maximize the efficiency of mosquito control efforts. Using a generalized linear model with negative binominal distribution and log link, this study compares larval densities, determined by focused dipping, between 13 discernable vegetation categories. The incidence rate ratios (RR) generated can be used to compare the magnitude of larval densities for each vegetation category, compared with the reference category. Aedes vigilax larval densities were almost ten times greater in artificial drainage areas (RR=9.82), followed by tide‐affected reticulate (Sporobolus/Xerochloa) areas (RR=8.15), then Schoenoplectus/mangroves (RR=2.29), compared with the reference vegetation category “lower mangroves.” Furthermore, larval densities were highest in May, due to tidal inundation, for drainage areas and tide‐affected reticulates (RR=12.2, 11.7, respectively) compared with March, the reference month. Thus, to maximize the efficiency of aerial salt marsh mosquito control operations in this wetland, larval control is best accomplished by concentrating on drains, Schoenoplectus/mangroves, and tide‐affected reticulate areas, commencing early after the wet season. These results should apply to other areas of salt marsh mosquito breeding across northern Australia.  相似文献   

3.
In northern Australia the northern salt marsh mosquito Aedes vigilax is a vector of Ross River virus and is an appreciable pest. A coastal wetland adjacent to Darwin's residential suburbs offers a favorable habitat for Ae. vigilax, and despite vigilant mosquito control efforts, peaks of Ae. vigilax occur in excess of 500/trap/night some months. To improve mosquito control for disease and nuisance biting to nearby residential areas, we sought to investigate meteorological drivers associated with these Ae. vigilax peaks. We fitted a cross‐sectional logistic regression model to weekly counts of female Ae. vigilax mosquitoes collected between July, 1998 and June, 2009 against variables, tide, rainfall, month, year, and larval control. Aedes vigilax peaks were associated with rainfall during the months September to November compared with January, when adjusted for larval control and tide. To maximize mosquito control efficiency, larval control should continue to be implemented after high tides and with increased emphasis on extensive larval hatches triggered by rainfall between September and November each year. This study reiterates the importance of monitoring and evaluating service delivery programs. Using statistical modelling, service providers can obtain solutions to operational problems using routinely collected data. These methods may be applicable in mosquito surveillance or control programs in other areas.  相似文献   

4.
Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host–vector interaction and the predator–prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.  相似文献   

5.
Environmental disturbances such as deforestation, urbanization or pollution have been widely acknowledged to play a key role in the emergence of many infectious diseases, including mosquito-borne viruses. However, we have little understanding of how habitat isolation affects the communities containing disease vectors. Here, we test the effects of habitat type and isolation on the colonization rates, species richness and abundances of mosquitoes and their aquatic predators in water-filled containers in northwestern Thailand. For eight weeks water-filled containers were monitored in areas containing forest, urban and agricultural habitats and mixtures of these three. Mosquito larvae of the genera Aedes and Culex appeared to be differentially affected by the presence of the dominant predator; Toxorhynchites splendens (Culicidae). Therefore, a predation experiment was conducted to determine predator response to prey density and its relative effects on different mosquito prey populations. Colonization rates, species richness and abundances of mosquito predators were strongly related to forest habitat and to the distance from other aquatic habitats. Areas with more tree cover had higher predator species richness and abundance in containers. Containers that were close to surface water were more rapidly colonized than those further away. In all habitat types, including urban areas, when predators were present, the number of mosquito larvae was much lower. Containers in urban areas closer to water-bodies, or with more canopy cover, had higher predator colonization rates and species richness. T. splendens (Culicidae) preyed on the larvae of two mosquito genera at different rates, which appeared to be related to prey behaviour. This study shows that anthropogenic landscape modification has an important effect on the natural biological control of mosquitoes. Vector control programmes and urban planning should attempt to integrate ecological theory when developing strategies to reduce mosquito populations. This would result in management strategies that are beneficial for both public health and biodiversity.  相似文献   

6.
Metacommunity theory is a convenient framework in which to investigate how local communities linked by dispersal influence patterns of species distribution and abundance across large spatial scales. For organisms with complex life cycles, such as mosquitoes, different pressures are expected to act on communities due to behavioral and ecological partitioning of life stages. Adult females select habitats for oviposition, and resulting offspring are confined to that habitat until reaching adult stages capable of flight; outside‐container effects (OCE) (i.e., spatial factors) are thus expected to act more strongly on species distributions as a function of adult dispersal capability, which should be limited by geographic distances between sites. However, larval community dynamics within a habitat are influenced by inside‐container effects (ICE), mainly interactions with conspecifics and heterospecifics (e.g., through effects of competition and predation). We used a field experiment in a mainland‐island scenario to assess whether environmental, spatial, and temporal factors influence mosquito prey and predator distributions and abundances across spatial scales: within‐site, between‐site, and mainland‐island. We also evaluated whether predator abundances inside containers play a stronger role in shaping mosquito prey community structure than do OCE (e.g., spatial and environmental factors). Temporal influence was more important for predators than for prey mosquito community structure, and the changes in prey mosquito species composition over time appear to be driven by changes in predator abundances. There was a negligible effect of spatial and environmental factors on mosquito community structure, and temporal effects on mosquito abundances and distributions appear to be driven by changes in abundance of the dominant predator, perhaps because ICE are stronger than OCE due to larval habitat restriction, or because adult dispersal is not limited at the chosen spatial scales.  相似文献   

7.
Will mangrove encroachment into saltmarshes affect saltwater mosquito habitats? To address this, we synthesized information from two perspectives: 1) at a detailed level, the immature mosquito habitat within mangroves; 2) at a more general or regional level, changes due to mangrove expansion into saltmarshes. This is a synthesis of two research projects. One showed that mosquito larval habitats in mangroves are complex, related to the detailed interactions between topography and tidal patterns and that not all parts of a mangrove forest are suitable habitat. The other, based on remote sensing and analysis of rainfall data, showed that mangrove encroachment in eastern Australia is related to both climate and human land use over several decades (1972–2004). An important question emerged: when mangroves encroach into saltmarshes will they displace saltmarsh immature mosquito habitats or will they replace them with mangrove ones? There is no simple answer: it will vary with climate change and sea level scenario and how these affect the system. We conclude that mosquito management, which is locally implemented, needs to be integrated with land use planning systems, which often operate at a more general level.  相似文献   

8.
Insectivorous bats have often been touted as biological control for mosquito populations. However, mosquitoes generally represent only a small proportion of bat diet. Given the small size of mosquitoes, restrictions imposed on prey detectability by low frequency echolocation, and variable field metabolic rates (FMR), mosquitoes may not be available to or profitable for all bats. This study investigated whether consumption of mosquitoes was influenced by bat size, which is negatively correlated with echolocation frequency but positively correlated with bat FMR. To assess this, we investigated diets of five eastern Australian bat species (Vespadelus vulturnus Thomas, V. pumilus Gray, Miniopterus australis Tomes, Nyctophilus gouldi Tomes and Chalinolobus gouldii Gray) ranging in size from 4-14 g in coastal forest, using molecular analysis of fecal DNA. Abundances of potential mosquito and non-mosquito prey were concurrently measured to provide data on relative prey abundance. Aedes vigilax was locally the most abundant mosquito species, while Lepidoptera the most abundant insect order. A diverse range of prey was detected in bat feces, although members of Lepidoptera dominated, reflecting relative abundance at trap sites. Consumption of mosquitoes was restricted to V. vulturnus and V. pumilus, two smaller sized bats (4 and 4.5 g). Although mosquitoes were not commonly detected in feces of V. pumilus, they were present in feces of 55 % of V. vulturnus individuals. To meet nightly FMR requirements, Vespadelus spp. would need to consume ~600-660 mosquitoes on a mosquito-only diet, or ~160-180 similar sized moths on a moth-only diet. Lower relative profitability of mosquitoes may provide an explanation for the low level of mosquito consumption among these bats and the absence of mosquitoes in feces of larger bats. Smaller sized bats, especially V. vulturnus, are likely to be those most sensitive to reductions in mosquito abundance and should be monitored during mosquito control activities.  相似文献   

9.
A series of laboratory experiments compared predation rates of three native eastern Australian mangrove fish species (Psuedomugil signifer, Hyseleotris galii, Pseudogobius sp.) and the exotic Gambusia holbrooki on 2nd and 4th instar Aedes vigilax larvae, in order to determine their potential as mosquito control agents in mangrove forests. All four species preyed on significant numbers of both 2nd and 4th instar larvae. All showed a similar pattern of larval consumption, gorging on larvae in the first hour of each experiment, before reducing to a relatively constant background feeding rate. Gambusia holbrooki showed the highest larval consumption rates, but is unsuitable as a mosquito control agent due to it being an exotic pest species in Australia. Of the three native species, P. signifer showed the greatest potential as a mosquito control agent, having consumption rates comparable to G. holbrooki, and was the only species that did not show a significant reduction in larval consumption in the night experiments.  相似文献   

10.
Mangroves harbor mosquitoes capable of transmitting human pathogens; consequently, urban mangrove management must strike a balance between conservation and minimizing public health risks. Land use may play a key role in shaping the mosquito community within urban mangroves through either species spillover or altering the abundance of mosquitoes associated with the mangrove. In this study, we explore the impact of land use within 500 m of urban mangroves on the abundance and diversity of adult mosquito populations. Carbon dioxide baited traps were used to sample host-seeking female mosquitoes around nine mangrove forest sites along the Parramatta River, Sydney, Australia. Specimens were identified to species and for each site, mosquito species abundance, species richness and diversity were calculated and were analyzed in linear mixed effects models. We found that the percentage of residential land and bushland in the surrounding area had a negative effect on mosquito abundance and species richness. Conversely, the amount of mangrove had a significant positive effect on mosquito abundance, and the amount of industrial land had a significant positive effect on species richness. These results demonstrate the need for site-specific investigations of mosquito communities associated with specific habitat types and the importance of considering surrounding land use in moderating local mosquito communities. A greater understanding of local land use and its influence on mosquito habitats could add substantially to the predictive power of disease risk models and assist local authorities develop policies for urban development and wetland rehabilitation.  相似文献   

11.
1. The strengths of trophic interactions within ecosystems can be mediated by complex mechanisms that require elucidation if researchers are to understand and predict population- and community-level stabilities. Where multiple prey types co-occur, prey switching (i.e. frequency-dependent predation) by predators may facilitate low-density prey refuge effects which promote coexistence. On the other hand, lack of switching and strong preferences by predators can strongly suppress prey populations, which is especially important considering vector species such as mosquitoes. 2. The present study quantifies prey switching and preference patterns of the temporary pond specialist copepod Lovenula raynerae towards larvae of the medically important Culex pipiens mosquito complex in the presence of different proportions of alternative Daphnia pulex prey. Further, it examines whether prey switching and preferences are contingent on the sex of the predator. 3. Lovenula raynerae exhibited a lack of prey switching and strong preference for larval mosquito prey overall, irrespective of predator sex. Also, when larval mosquitoes were available in higher proportions over daphniids, the strength of this positive selectivity increased. There was very little low-density refuge for mosquitoes where they were rare. 4. Lack of prey switching and strong preferences towards mosquitoes by predatory paradiaptomid copepods may enhance population-level regulation of disease vector mosquitoes that exploit temporary pond-style habitats. Accordingly, the conservation and promotion of these predators might enable better management of medically important species across landscapes.  相似文献   

12.
The number of prey killed by diverse predator communities is determined by complementarity and interference among predators, and by traits of particular predator species. However, it is less clear how predators' nonconsumptive effects (NCEs) scale with increasing predator biodiversity. We examined NCEs exerted on Culex mosquitoes by a diverse community of aquatic predators. In the field, mosquito larvae co‐occurred with differing densities and species compositions of mesopredator insects; top predator dragonfly naiads were present in roughly half of surveyed water bodies. We reproduced these predator community features in artificial ponds, exposing mosquito larvae to predator cues and measuring resulting effects on mosquito traits throughout development. Nonconsumptive effects of various combinations of mesopredator species reduced the survival of mosquito larvae to pupation, and reduced the size and longevity of adult mosquitoes that later emerged from the water. Intriguingly, adding single dragonfly naiads to ponds restored survivorship of larval mosquitoes to levels seen in the absence of predators, and further decreased adult mosquito longevity compared with mosquitoes emerging from mesopredator treatments. Behavioral observations revealed that mosquito larvae regularly deployed “diving” escape behavior in the presence of the mesopredators, but not when a dragonfly naiad was also present. This suggests that dragonflies may have relaxed NCEs of the mesopredators by causing mosquitoes to abandon energetically costly diving. Our study demonstrates that adding one individual of a functionally unique species can substantially alter community‐wide NCEs of predators on prey. For pathogen vectors like mosquitoes, this could in turn influence disease dynamics.  相似文献   

13.
Adjacent to the northern suburbs of Darwin is a coastal wetland that contains important larval habitats for Aedes vigilax (Skuse), the northern salt marsh mosquito. This species is a vector for Ross River virus and Barmah Forest virus, as well as an appreciable human pest. In order to improve aerial larval control efforts, we sought to identify the most important vegetation categories and climatic/seasonal aspects associated with control operations in these wetlands. By using a generalized linear model to compare aerial control for each vegetation category, we found that Schoenoplectus/mangrove areas require the greatest amount of control for tide‐only events (30.1%), and also extensive control for tide and rain events coinciding (18.2%). Our results further indicate that tide‐affected reticulate vegetation indicated by the marsh grasses Sporobolus virginicus and Xerochloa imberbis require extensive control for Ae. vigilax larvae after rain‐only events (44.7%), and tide and rain events coinciding (38.0%). The analyses of vector control efforts by month indicated that September to January, with a peak in November and December, required the most control. A companion paper identifies the vegetation categories most associated with Aedes vigilax larvae population densities in the coastal wetland. To maximize the efficiency of aerial salt marsh mosquito control operations in northern Australia, aerial control efforts should concentrate on the vegetation categories with high larval densities between September and January.  相似文献   

14.
1. Several species with complex life‐history traits such as amphibians and insects with aquatic immature stages and terrestrial adults avoid ovipositing in pools containing larvivorous fish. This avoidance response was assumed to be a general one for most fish species. 2. The generality of ovipositing Culex to the presence of three, widespread larvivorous fish species was tested in a set of field experiments with artificial oviposition pools using caged fish. 3. Larval performance was further examined under actual predation by these three fish species. 4. Results show that ovipositing females responded strongly to the presence of caged mosquitofish, Gambusia affinis, while showing no significant response to the presence of caged green sunfish, Lepomis cyanellus, or the pirate perch, Aphredoderus sayanus. All three fish species consumed similar amounts of larvae. 5. This is the first example of species‐specific response differences to predators during mosquito oviposition habitat selection. These results point to the existence of predator‐released kairomones affecting mosquito behaviour. These kairomones may either be species‐specific or vary in concentration among fish, and probably have an important role in the understanding of mosquito spatial distribution.  相似文献   

15.
  • 1 Wetlands harbour high biodiversity and offer important ecosystem services, but they are also a habitat for mosquito larvae (Diptera: Culicidae), which are important disease vectors.
  • 2 Isolation among remnant, or newly created wetlands and ponds, and their consequent density in the landscape, is a key factor that can influence a variety of food web processes, including effects on mosquitoes which are important prey to many predators.
  • 3 We assess the impact of habitat isolation on the density of pond‐breeding mosquitoes (several Anopheles and Culex species) both directly and indirectly through the food web.
  • 4 Results from structural equation modelling of survey data shows that larval mosquitoes are denser in ponds that are more isolated from one another, and that this result was primarily driven indirectly by a reduction of larval mosquito predators (e.g. predaceous insects and amphibians). Furthermore, results from a long‐term mesocosm experiment factorially manipulating isolation and predator reduction show that the effect of isolation on mosquito density was eliminated when predators were experimentally reduced.
  • 5 It is concluded that metacommunity processes, both directly and indirectly mediated through predators, can play an important role in the local abundance of wetland breeding mosquitoes and possibly the diseases they spread.
  相似文献   

16.
Predation is believed to be an important natural control on larval mosquito populations. However, empirical evidence for predator impacts is lacking, especially from natural wetlands (swamps and marshes). Over a 2-year period, we sampled larval mosquito populations and naturally co-occurring predator assemblages (aquatic invertebrates, fishes) from ten depressional wetlands (Carolina bays) located on a wildlife management area in east central Georgia. We collected a diversity of mosquito larvae and predators (odonates, bugs, beetles, flies, and fishes) from the wetlands, with predator numbers substantially exceeding mosquito larval numbers. However, using a community ecology approach with multivariate ordination and correlation techniques, we found no compelling evidence that these predators were controlling mosquito larval distributions (i.e. significant negative statistical associations were not detected). Those mosquitoes that successfully breed in Carolina bay wetlands (Culiseta melanura, Coquillettidia perturbans, Anopheles crucians) appear well adapted to co-exist with a plethora of naturally occurring predators.  相似文献   

17.
The cyclopoid copepod Macrocyclops albidus (Jurine) was tested as a potential biological control agent of mosquitoes in laboratory microcosms, in controlled field conditions, and in a 22-mo field experiment using discarded tires. The predator was highly efficient in controlling mosquitoes in all three settings, reaching close to 90% reduction in larval survival under field conditions and exceeding the recommended predation rates for effective mosquito control in laboratory experiments. The predator was most effective on 1-4-d-old larvae. Alternate food and habitat structure significantly influenced the predation rates on mosquito larvae. Once established, the copepod was able to maintain reproducing populations in the field for the duration of the experiments. However, the predator failed to establish populations at four of the experimental field sites. Two of the failures can be attributed to characteristics of the individual tires, such as leaching chemicals, whereas the other two were probably due to site-specific factors. This copepod species is a promising candidate for control of mosquito larvae because it is a widespread and highly effective predator that is capable of establishing and maintaining populations under a wide variety of field conditions. Additionally, M. albidus is relatively easy to culture, maintain, and deliver to the target areas.  相似文献   

18.
Accumulating evidence indicates that species interactions such as competition and predation can indirectly alter interactions with other community members, including parasites. For example, presence of predators can induce behavioural defences in the prey, resulting in a change in susceptibility to parasites. Such predator-induced phenotypic changes may be especially pervasive in prey with discrete larval and adult stages, for which exposure to predators during larval development can have strong carry-over effects on adult phenotypes. To the best of our knowledge, no study to date has examined possible carry-over effects of predator exposure on pathogen transmission. We addressed this question using a natural food web consisting of the human malaria parasite Plasmodium falciparum, the mosquito vector Anopheles coluzzii and a backswimmer, an aquatic predator of mosquito larvae. Although predator exposure did not significantly alter mosquito susceptibility to P. falciparum, it incurred strong fitness costs on other key mosquito life-history traits, including larval development, adult size, fecundity and longevity. Using an epidemiological model, we show that larval predator exposure should overall significantly decrease malaria transmission. These results highlight the importance of taking into account the effect of environmental stressors on disease ecology and epidemiology.  相似文献   

19.
Oviposition habitat selection (OHS) is increasingly being recognized as playing a large role in explaining mosquito distributions and community assemblages. Most studies have assessed the role of single factors affecting OHS, while in nature, oviposition patterns are most likely explained by multiple, interacting biotic and abiotic factors. Determining how various factors interact to affect OHS is important for understanding metapopulation and metacommunity dynamics. We investigated the individual and interactive effects of three water salinities (0, 15 and 30 p.p.t. NaCl added) and the aquatic predator Anisops debilis Perplexa (Hemiptera: Notonectidae) on OHS and larval performance of the mosquitoes Ochlerotatus caspius Pallas and Culiseta longiareolata Macquart (Diptera: Culicidae) in outdoor-artificial-pool and laboratory experiments. C. longiareolata inhabited only freshwater pools, strongly avoided pools containing A. debilis, and larvae experienced lower survival in the presence of A. debilis. Salinity concentration interacted strongly with the predator in affecting OHS and larval survival of O. caspius; oviposition increased with increasing salinity in the absence of the predator and decreased with increasing salinity in the presence of the predator. O. caspius larval survival in predator-free pools was lowest in freshwater and highest at intermediate salinity. In predator pools, survival was highest at high salinity, where predation rate was shown to be lowest in the laboratory. Our results highlight that assessing the role of single factors in affecting mosquito distributions can be misleading. Instead, multiple factors may interact to affect oviposition patterns and larval performance.  相似文献   

20.
Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号