首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bell JI 《Arthritis research》2002,4(Z3):S273-S278
Single nucleotide polymorphisms are the most important and basic form of variation in the genome, and they are responsible for genetic effects that produce susceptibility to most autoimmune diseases. The rapid development of databases containing very large numbers of single nucleotide polymorphisms, and the characterization of haplotypes and patterns of linkage disequilibrium throughout the genome, provide a unique opportunity to advance association strategies in common disease rapidly over the next few years. Only the careful use of these strategies and a clear understanding of their statistical limits will allow novel genetic determinants for many of the common autoimmune diseases to be determined.  相似文献   

3.
鸡单核苷酸多态性与高清晰度QTL图谱的构建   总被引:4,自引:1,他引:3  
饶友生  张细权 《遗传》2007,29(4):393-398
作为一种重要的经济动物和模式动物, 鸡SNP多样性的研究以及鸡主要经济性状QTL定位的研究近年来成绩斐然。文章综述了上述研究成果, 并就SNP标记在鸡QTL精细定位方面的研究前景进行了展望。  相似文献   

4.
5.
When multiple genetic maps exist for a species, integration of these maps requires a set of common markers be genotyped across the individual mapping populations. In the turkey, three genetic maps based on separate mapping populations are available. In this study, SNP-based markers were developed for integrating the cDNA/RFLP-based map (1) with microsatellite markers of the second-generation turkey genome map (2). Forty-eight primer sets were designed and tested and 33 (69%) correctly amplified turkey genomic DNA by PCR. Putative SNPs were detected in 20 (61%) of the amplified gene fragments, and 10 SNP markers were subsequently genotyped by PCR/RFLP for segregation analysis. Eight SNP markers were incorporated into the turkey genetic map.  相似文献   

6.
Polymorphic markers at bovine gene loci facilitate the integration of cattle genetic maps with those of humans and mice. To this end, 31 single nucleotide polymorphism (SNP) markers were developed for seven bovine chemokine genes. Loci were amplified from bovine genomic DNA by the polymerase chain reaction, and candidate amplicons were sequenced to determine their identity. Amplified loci from 24 founding parents and select progeny from a beef cattle reference population were sequenced and analyzed for SNPs. SNP haplotype alleles were determined by examining segregation patterns and used to establish the locus position on the bovine linkage map. Loci for growth-related proteins (GRO3, GRO1, and GROX) were clustered with the related CXC chemokine genes, interleukin (IL) 8, and epithelial cell inflammatory protein 1, at 84 cM from the centromeric end of the bovine chromosome (BTA) 6 linkage group. Bovine loci for a cluster of IL8 receptors, a stromal cell-derived factor 1, interferon-γ, and tumor necrosis factor-α were mapped at 90, 55, 59, and 34 cM, respectively, from the centromeric ends of the BTA 2, 28, 5, and 23 linkage groups. The positions of these bovine loci were compared with those of orthologous loci on the human map to refine the boundaries of conserved synteny. These seven loci provide examples of SNP development in which the efficiency was largely dependent on the availability of bovine genomic or cDNA sequence. The polymorphic nature of these SNP haplotype markers suggests that they will be useful for mapping complex traits in cattle, such as resistance to infectious disease. Received: 30 April 1999 / Accepted: 12 July 1999  相似文献   

7.
Studies of the oceanic and near-shore distributions of Pacific salmon, whose migrations typically span thousands of kilometres, have become increasingly valuable in the presence of climate change, increasing hatchery production and potentially high rates of bycatch in offshore fisheries. Genetics data offer considerable insights into both the migratory routes as well as the evolutionary histories of the species. However, these types of studies require extensive data sets from spawning populations originating from across the species' range. Single nucleotide polymorphisms (SNPs) have been particularly amenable for multinational applications because they are easily shared, require little interlaboratory standardization and can be assayed through increasingly efficient technologies. Here, we discuss the development of a data set for 114 populations of chum salmon through a collaboration among North American and Asian researchers, termed PacSNP. PacSNP is focused on developing the database and applying it to problems of international interest. A data set spanning the entire range of species provides a unique opportunity to examine patterns of variability, and we review issues associated with SNP development. We found evidence of ascertainment bias within the data set, variable linkage relationships between SNPs associated with ancestral groupings and outlier loci with alleles associated with latitude.  相似文献   

8.
Hirschsprung disease (HSCR) is a congenital, heterogeneous disorder, characterized by the absence of intestinal ganglion cells. Recent advances show that the RET gene is a major locus involved in the pathogenesis of HSCR. The aim of this study was to analyse if the HSCR phenotype in the Polish population is associated with the presence of polymorphisms in exons 2, 3, 7, 11, 13, 14 and 15 of the RET gene. Molecular results were compared with clinical and long-term follow-up data in 70 Polish patients with HSCR (84.3% with a short segment and 15.7% with a long segment of aganglionic gut). Single-nucleotide polymorphisms were analysed by using the minisequencing SNaPshot multiplex method. The 135G>A polymorphism in RET exon 2 was overrepresented in HSCR patients, compared with a healthy control group. Moreover, the 135G>A variant was shown to be associated with the severe HSCR phenotype. Two other polymorphisms, 2071G>A in exon 11 and 2712C>G in exon 15, were underrepresented in the patients. The results confirm that these RET polymorphisms play a role in the aetiology of HSCR.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) were discovered in common bean (Phaseolus vulgaris L.) via resequencing of sequence-tagged sites (STSs) developed by PCR primers previously designed to soybean shotgun and bacterial artificial chromosome (BAC) end sequences, and by primers designed to common bean genes and microsatellite flanking regions. DNA fragments harboring SNPs were identified in single amplicons from six contrasting P. vulgaris genotypes of the Andean (Jalo EEP 558, G 19833, and AND 277) and Mesoamerican (BAT 93, DOR 364, and Rudá) gene pools. These genotypes are the parents of three common bean recombinant inbred line mapping populations. From an initial set of 1,880 PCR primer pairs tested, 265 robust STSs were obtained, which could be sequenced in each one of the six common bean genotypes. In the resulting 131,120?bp of aligned sequence, a total of 677 SNPs were identified, including 555 single-base changes (295 transitions and 260 transversions) and 122 small nucleotide insertions/deletions (indels). The frequency of SNPs was 5.16 SNPs/kb and the mean nucleotide diversity, expressed as Halushka??s theta, was 0.00226. This work represents one of the first efforts aimed at detecting SNPs in P. vulgaris. The SNPs identified should be an important resource for common bean geneticists and breeders for quantitative trait locus discovery, marker-assisted selection, and map-based cloning. These SNPS will be also useful for diversity analysis and microsynteny studies among legume species.  相似文献   

10.
Single nucleotide polymorphisms (SNPs) have become an important type of marker for commercial diagnostic and parentage genotyping applications as automated genotyping systems have been developed that yield accurate genotypes. Unfortunately, allele frequencies for public SNP markers in commercial pig populations have not been available. To fulfil this need, SNP markers previously mapped in the USMARC swine reference population were tested in a panel of 155 boars that were representative of US purebred Duroc, Hampshire, Landrace and Yorkshire populations. Multiplex assay groups of 5-7 SNP assays/group were designed and genotypes were determined using Sequenom's massarray system. Of 80 SNPs that were evaluated, 60 SNPs with minor allele frequencies >0.15 were selected for the final panel of markers. Overall identity power across breeds was 4.6 x 10(-23), but within-breed values ranged from 4.3 x 10(-14) (Hampshire) to 2.6 x 10(-22) (Yorkshire). Parentage exclusion probability with only one sampled parent was 0.9974 (all data) and ranged from 0.9594 (Hampshire) to 0.9963 (Yorkshire) within breeds. Sire exclusion probability when the dam's genotype was known was 0.99998 (all data) and ranged from 0.99868 (Hampshire) to 0.99997 (Yorkshire) within breeds. Power of exclusion was compared between the 60 SNP and 10 microsatellite markers. The parental exclusion probabilities for SNP and microsatellite marker panels were similar, but the SNP panel was much more sensitive for individual identification. This panel of SNP markers is theoretically sufficient for individual identification of any pig in the world and is publicly available.  相似文献   

11.
Chen Z  Liu Q 《Human heredity》2011,72(1):1-9
In genetic association studies, such as genome-wide association studies (GWAS), the number of single nucleotide polymorphisms (SNPs) can be as large as hundreds of thousands. Due to linkage disequilibrium, many SNPs are highly correlated; assuming they are independent is not valid. The commonly used multiple comparison methods, such as Bonferroni correction, are not appropriate and are too conservative when applied to GWAS. To overcome these limitations, many approaches have been proposed to estimate the so-called effective number of independent tests to account for the correlations among SNPs. However, many current effective number estimation methods are based on eigenvalues of the correlation matrix. When the dimension of the matrix is large, the numeric results may be unreliable or even unobtainable. To circumvent this obstacle and provide better estimates, we propose a new effective number estimation approach which is not based on the eigenvalues. We compare the new method with others through simulated and real data. The comparison results show that the proposed method has very good performance.  相似文献   

12.
Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgressionthe former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines (θ = 0.0094) than wild populations (θ = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome (~3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.  相似文献   

13.
Single nucleotide polymorphisms and recombination rate in humans   总被引:34,自引:0,他引:34  
Levels of heterozygosity for single nucleotide polymorphisms vary by more than one order of magnitude in different regions of the human genome. Regional differences in the rate of recombination explain a substantial fraction of the variation in levels of nucleotide polymorphism, consistent with the widespread action of natural selection at the molecular level.  相似文献   

14.
鸡基因组pre-microRNA SNP多态性   总被引:2,自引:0,他引:2  
为探讨鸡pre-microRNA SNP的多态性及其可能的功能意义, 对鸡471个pre-microRNA区域的SNP位点进行了鉴定和生物信息学分析。结果表明: pre-microRNA的SNP多态性显著地低于其侧翼区(P<0.01=, 其种子区SNP变异对pre-microRNA二级结构稳定性的影响高于其他各区; microRNA成熟体SNP可能影响microRNA对靶基因的选择。研究结果提示: pre-microRNA相对于其侧翼区在分子进化过程中受到更大的选择压力; 成熟体SNP可通过影响microRNA加工和靶基因的选择, 改变多种生理过程, 导致鸡种间表型变异。研究结果将为鸡microRNA的进化模式研究及其功能性SNP的鉴定提供参考信息。  相似文献   

15.
The calpains and calpastatin (CAST) make up a major cytosolic proteolytic system, the calpain-calpastatin system, found in mammalian tissues. The relative levels of the components of the calpain-calpastatin system determine the extent of meat tenderization during postmortem storage. Calpastatin (CAST) is a protein inhibitor of the ubiquitous calcium-dependent proteases, μ-calpain, and m-calpain. Polymorphisms in the bovine, ovine and pig CAST gene have been associated with meat tenderness but little is known about how caprine CAST gene may affect goat meat quality traits. In this study we selected different parts of the CAST gene: (1) that have been previously reported to be polymorphic, intron 5 and 12 and 3’UTR; (2) first time explored (exon 3, 7 and 8 and part of intron 7 and 8) to investigate polymorphic status of caprine CAST gene. Using comparative sequencing ten novel SNPs located in exon 3 and intron 5, 7 and 8 were identified. Previously reported SNPs in intron 5, 3’UTR and intron 12 were absent. Sequence analysis revealed a non synonymous amino acid variation in exon 3, which would result in Lys/Arg substitution in the corresponding protein sequence. Considerable variation was detected in intronic regions. Twenty-four InDel were also recognized in intronic regions (15) and 3’UTR (9). All the sequences shared high homology with published bovine and ovine sequences. Three PCR-RFLP loci have been established for further analyzing genetic polymorphism in indigenous goats.  相似文献   

16.
Single nucleotide polymorphisms (SNPs) are about to become one of the most popular genetic markers for genetic model organisms. To test the usefulness of SNPs for estimating genetic diversity, we surveyed three genomic regions in two Drosophila melanogaster populations, one from Africa and one European, collected in Austria. Diversity estimates based on the full SNP set indicated higher levels of variability in the African than in the European flies. When the analysis was based on the European SNP set, European and African flies had similar levels of variability. Interestingly, this bias was not observed for diversity estimates using SNPs derived from the ancestral African population. This result suggests that diversity estimates based on SNPs from ancestral populations could provide a general strategy to avoid biased SNP diversity estimates. Finally, the potential of SNPs for nonmodel organisms is discussed.  相似文献   

17.
Molecular markers are used to provide the link between genotype and phenotype, for the production of molecular genetic maps and to assess genetic diversity within and between related species. Single nucleotide polymorphisms (SNPs) are the most abundant molecular genetic marker. SNPs can be identified in silico , but care must be taken to ensure that the identified SNPs reflect true genetic variation and are not a result of errors associated with DNA sequencing. The SNP detection method autoSNP has been developed to identify SNPs from sequence data for any species. Confidence in the predicted SNPs is based on sequence redundancy, and haplotype co-segregation scores are calculated for a further independent measure of confidence. We have extended the autoSNP method to produce autoSNPdb, which integrates SNP and gene annotation information with a graphical viewer. We have applied this software to public barley expressed sequences, and the resulting database is available over the Internet. SNPs can be viewed and searched by sequence, functional annotation or predicted synteny with a reference genome, in this case rice. The correlation between SNPs and barley cultivar, expressed tissue type and development stage has been collated for ease of exploration. An average of one SNP per 240 bp was identified, with SNPs more prevalent in the 5' regions and simple sequence repeat (SSR) flanking sequences. Overall, autoSNPdb can provide a wealth of genetic polymorphism information for any species for which sequence data are available.  相似文献   

18.
Adzuki bean, also known as red bean (Vigna angularis), with 2n = 22 chromosomes, is an important legume crop in East Asian countries, including China, Japan, and Korea. For single nucleotide polymorphism (SNP) discovery, we used Vigna accessions, V. angularis IT213134 and its wild relative V. nakashimae IT178530, because of the lack of DNA sequence polymorphism in the cultivated species. Short read sequences of IT213134 and IT178530 of approximately 37 billion and 35 billion bp were produced using the Illumina HiSeq 2000 system to a sequencing depth of 61.5× and 57.7×, respectively. After de novo assembly was carried out with trimmed HiSeq reads from IT213134, 98,441 contigs of various sizes were produced with N50 of 13,755 bp. Using Burrows–Wheeler Aligner software, trimmed short reads of V. nakashimae IT178530 were successfully mapped to IT213134 contigs. All sequence variations at the whole-genome level were examined between the two Vigna species. Of the 1,565,699 SNPs, 59.4 % were transitions and 40.6 % were transversions. A total of 213,758 SNPs, consisting of 122,327 non-synonymous and 91,431 synonymous SNPs, were identified in coding sequences. For SNP validation, 96 SNPs in the genic region were chosen from among IT213134 contigs longer than 10 kb. Of these 96 SNPs, 88 were confirmed by Sanger sequencing of 10 adzuki bean genotypes from various geographic origins as well as IT213134 and its wild relative IT178530. These genome-wide SNP markers will enrich the existing Vigna resources and, specifically, could be of value for constructing a genetic map and evaluating the genetic diversity of adzuki bean.  相似文献   

19.
Genetic markers are important resources for individual identification and parentage assessment. Although short tandem repeats (STRs) have been the traditional DNA marker, technological advances have led to single nucleotide polymorphisms (SNPs) becoming an attractive alternative. SNPs can be highly multiplexed and automatically scored, which allows for easier standardization and sharing among laboratories. Equine parentage is currently assessed using STRs. We obtained a publicly available SNP dataset of 729 horses representing 32 diverse breeds. A proposed set of 101 SNPs was analyzed for DNA typing suitability. The overall minor allele frequency of the panel was 0.376 (range 0.304–0.419), with per breed probability of identities ranging from 5.6 × 10?35 to 1.86 × 10?42. When one parent was available, exclusion probabilities ranged from 0.9998 to 0.999996, although when both parents were available, all breeds had exclusion probabilities greater than 0.9999999. A set of 388 horses from 35 breeds was genotyped to evaluate marker performance on known families. The set included 107 parent–offspring pairs and 101 full trios. No horses shared identical genotypes across all markers, indicating that the selected set was sufficient for individual identification. All pairwise comparisons were classified using ISAG rules, with one or two excluding markers considered an accepted parent–offspring pair, two or three excluding markers considered doubtful and four or more excluding markers rejecting parentage. The panel had an overall accuracy of 99.9% for identifying true parent–offspring pairs. Our developed marker set is both present on current generation SNP chips and can be highly multiplexed in standalone panels and thus is a promising resource for SNP‐based DNA typing.  相似文献   

20.
Autosomal DNA polymorphisms can provide new information and understanding of both the origins of and relationships among modern Native American populations. At the same time that autosomal markers can be highly informative, they are also susceptible to ascertainment biases in the selection of the markers to use. Identifying markers that can be used for ancestry inference among Native American populations can be considered separate from identifying markers to further the quest for history. In the current study, we are using data on nine Native American populations to compare the results based on a large haplotype‐based dataset with relatively small independent sets of single nucleotide polymorphisms. We are interested in what types of limited datasets an individual laboratory might be able to collect are best for addressing two different questions of interest. First, how well can we differentiate the Native American populations and/or infer ancestry by assigning an individual to her population(s) of origin? Second, how well can we infer the historical/evolutionary relationships among Native American populations and their Eurasian origins? We conclude that only a large comprehensive dataset involving multiple autosomal markers on multiple populations will be able to answer both questions; different small sets of markers are able to answer only one or the other of these questions. Using our largest dataset, we see a general increasing distance from Old World populations from North to South in the New World except for an unexplained close relationship between our Maya and Quechua samples. Am J Phys Anthropol, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号