首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel associations between invasive plants and their natural enemies in the introduced range have recently received increasing attention; however, the effects of novel enemies on exotic plant performance and competition with native species remain poorly explored. Here, we tested the impact of herbivory by a native beetle, Cassida piperata, on the performance of the exotic species Alternanthera philoxeroides and competition with a native congener, Alternanthera sessilis, using common garden experiments in central China. We found A. philoxeroides was able to fully compensate for intense herbivory by C. piperata. Herbivory by C. piperata that released at the average density in this region had no impact on competition between the native and exotic plant species. Our results indicate that herbivory by novel enemies may not reduce exotic plant performance due to plant compensation. However, high tolerance to herbivory may not confer a competitive advantage for exotic species compared to less tolerant native competitors if the herbivore damage is below a certain threshold. Thus, it is necessary to assess the impact of novel enemies on exotic plant performance and competition with native plants along gradients of insect densities. This may lead to a better understanding of how best to exploit the role of native herbivores in facilitating or slowing plant invasions.  相似文献   

2.
The indirect effects of native generalist insect herbivores on interactions between exotic and native grassland plants have received limited attention. Crested wheatgrass ( Agropyron cristatum ) is the most common exotic rangeland grass in western North America. Crested wheatgrass communities are resistant to colonization by native plant species and have strong competitive effects on native species, imposing problems for the restoration of native grasslands. Grasshoppers are generalist herbivores that are often abundant in Crested wheatgrass–dominated sites in the northern Great Plains. We conducted two experiments in a Crested wheatgrass–dominated grassland in western North Dakota to test the hypothesis that grasshopper herbivory influences local Crested wheatgrass community composition by impeding native seedlings. Grasshopper herbivory negatively affected the species richness, abundance, and Shannon diversity of native plants in 3 of 4 years. Although additional research is needed to determine if grasshoppers actively select native plants, the effects of grasshopper herbivory may be an important consideration in the restoration of Crested wheatgrass areas. Our findings illustrate the importance of understanding the impact of native generalist invertebrate herbivores on the relationships between exotic and native plants.  相似文献   

3.
Exotic plant invasion can have dramatic impacts on native plants making restoration of native vegetation at invaded sites challenging. Though invasives may be superior competitors, it is possible their dominance could be enhanced by insect herbivores if native plants are preferred food sources. Insect herbivory can regulate plant populations, but little is known of its effects in restoration settings. There is a need to better understand relationships between insect herbivores and invasive plants with regard to their combined potential for impacting native plant establishment and restoration success. The objective of this study was to assess impacts of grasshopper herbivory and the invasive grass Bromus tectorum (cheatgrass) on mortality and growth of 17 native plant species used in restoration of critical sagebrush steppe ecosystems. Field and greenhouse experiments were conducted using moderate densities of a common, generalist pest grasshopper (Melanoplus bivittatus). Grasshoppers had stronger and more consistent impacts on native restoration plants in field and greenhouse studies than cheatgrass. After 6 weeks in the greenhouse, grasshoppers were associated with 36% mortality over all native restoration species compared to 2% when grasshoppers were absent. Herbivory was also associated with an approximately 50% decrease in native plant biomass. However, effects varied among species. Artemisia tridentata, Chrysothamnus viscidiflorus, and Coreopsis tinctoria were among the most negatively impacted, while Oenothera pallida, Pascopyrum smithii, and Leymus cinerus were unaffected. These findings suggest restoration species could be selected to more effectively establish and persist within cheatgrass infestations, particularly when grasshopper populations are forecasted to be high.  相似文献   

4.
Plant compensatory growth is proposed to be insidious to biological control and known to vary under different environmental conditions. However, the effects of microsite conditions on compensation capacity and its indirect impacts on biological control of plant invaders have received little attention. Alligator weed, Alternanthera phioxeroides, is an invasive plant worldwide, growing in both aquatic and terrestrial habitats that are often affected by flooding. Biological control insects have been successful in suppressing the plant in many aquatic habitats but have failed in terrestrial habitats. To evaluate the impact of flooding on compensation capacity, we conducted common garden and greenhouse experiments in which plants were grown under different moisture conditions (aquatic versus terrestrial). Our results show that plants were able to fully recover from continued herbivory in the terrestrial habitat, but failed in the aquatic habitat, indicating a flooding-regulated plant compensatory capacity. Also, the grazed plants increased below-ground growth and reproductive root bud formation in the terrestrial habitat, but there was no such difference in the aquatic habitat. Our findings suggest that the differing plant compensatory capacity, affected by flooding, may explain the different biological control efficacy of alligator weed in aquatic and terrestrial habitats. Understanding mechanisms in plant invader compensation in different microsite conditions is important for improving management efficiency.  相似文献   

5.
Invasive plants may establish strong interactions with species in their new range which could limit or enhance their establishment and spread. These interactions depend upon traits of the invader and the recipient community, and may alter interactions among native species. In the Patagonian steppe we studied interactions of native ant assemblages with seeds of native and exotic plants, and asked whether ant–seed interactions differ with seed types and disturbance levels and whether the amount and type of ant–seed interactions can be predicted if both ant and seed traits are known. To characterize and quantify ant–seed interactions, we offered baits with large seeds of Pappostipa speciosa (native) and medium-sized elaiosome-bearing seeds of Carduus thoermeri (exotic), near and far from a road (high vs. low disturbed areas), and compared ant abundance and composition between areas. Interaction frequency was the highest for C. thoermeri seeds far from the road. Composition of ants interacting with C. thoermeri in these areas differed from that near the road and from that interacting with native seeds. Ant composition and abundance were similar between areas, but some species interacted more with exotic seeds in low disturbed areas. Ant foraging type predicted ant–seed interactions since the abundance of seed harvesters was positively correlated to interactions with P. speciosa, and that of generalists and predators, with interactions with C. thoermeri. The high interaction of ants with exotic seeds in low invaded areas suggests that ant activity could influence plant invasion, either by predating or dispersing seeds of invasive plants.  相似文献   

6.
Petroleum exploration and extraction are common on the Patagonian steppe, but their impacts on the native biodiversity have not been properly evaluated. We describe both activities in a Patagonian nature reserve and consider their potential impacts on biodiversity. More than 2025 km of seismic lines inside the reserve resulted in 87.21 m2/ha (0.9%) of directly affected land, and 793 fragments of native habitats were defined with a mean area of 1.26 ± 0.74 km2. Vegetation recovery on seismic lines is extremely poor. We discuss the role of seismic lines as barriers to native species, and their significance in encouraging poaching and the expansion of exotic invasive plants. There is a high degree of overlap between current petroleum activities and areas of special conservation concern (high erosion risk, vegetation diversity, abundance of endemic plant species, and habitat quality for native vertebrates). All these have a significant impact on the efficiency of the conservation area and highlight the urgent need to implement appropriate mitigating actions.  相似文献   

7.
Dominant plant species, or foundation species, are recognized to have a disproportionate control over resources in ecosystems, but few studies have evaluated their relationship to exotic invasions. Loss of foundation species could increase resource availability to the benefit of exotic plants, and could thereby facilitate invasion. The success of exotic plant invasions in sagebrush steppe was hypothesized to benefit from increased available soil water following removal of sagebrush (Artemisia tridentata), a foundation species. We examined the effects of sagebrush removal, with and without the extra soil water made available by exclusion of sagebrush, on abundance of exotic and native plants in the shrub steppe of southern Idaho, USA. We compared plant responses in three treatments: undisturbed sagebrush steppe; sagebrush removed; and sagebrush removed plus plots covered with “rainout” shelters that blocked winter-spring recharge of soil water. The third treatment allowed us to examine effects of sagebrush removal alone, without the associated increase in deep-soil water that is expected to accompany removal of sagebrush. Overall, exotic herbs (the grass Bromus tectorum and four forbs) were 3–4 times more abundant in shrub-removal and 2 times more abundant in shrub-removal + rainout-shelter treatments than in the control treatment, where sagebrush was undisturbed. Conversely, native forbs were only about half as abundant in shrub removal compared to control plots. These results indicate that removal of sagebrush facilitates invasion of exotic plants, and that increased soil water is one of the causes. Our findings suggest that sagebrush plays an important role in reducing invasions by exotic plants and maintaining native plant communities, in the cold desert we evaluated.  相似文献   

8.
Fontenla  S.  Puntieri  J.  Ocampo  J.A. 《Plant and Soil》2001,233(1):13-29
The mycorrhizal status of plant species in north-west Patagonia was examined. Communities representative of Patagonian steppe and marshes were compared with respect to the mycorrhizal status of their species.Most of both native and exotic plant species sampled were arbuscular mycorrhizal (AM). The percentage of species with mycorrhizal association was higher for perennial herbs and shrubs than for annual herbs. The higher ratio of mycorrhizal/nonmycorrhizal (NM) species found for dicotyledons than for monocotyledons, could reflect the presence of a considerable number of NM monocotyledons in the marsh. The mycorrhizal status of plants differed slightly between the steppe and the marsh. In the steppe, native AM species were more frequent than in the marsh. In contrast, in the marsh, the NM species were proportionally more represented than in the steppe. The Juncaceae and Cyperaceae, which include hydrohytic NM plants, accounted for many of these differences. Moreover, the dominant species in the marshes, Juncus arcticus, is a NM species.In the present study, most of species belonging to the same taxonomic family tended to have the same mycorrhizal associations, in agreement with studies on plants from other regions. Exceptions to this general behaviour were observed in the families Cyperaceae, Scrophulariaceae, Berberidaceae and Amaryllidaceae. The most represented families in which mycorrhizal behaviour differed between species of the same family were Asteraceae, Fabaceae and Poaceae. Senecio neaei (Asteraceae) and Boopis australis (Calyceraceae) showed facultative mycorrhizal behaviour.  相似文献   

9.
While the generally negative consequences of introduced species are well known, little is appreciated on the role of the evolutionary history of plants with herbivores in mediating the indirect impacts of herbivory. We examined how variation in plant resistance and tolerance traits can mediate the effects of herbivory and can have differential indirect impacts on other species and processes. We used two examples of a native and an introduced herbivore, Castor canadensis (American beaver) and Cervus elaphus (Rocky Mountain elk) with Populus spp. to test a conceptual model regarding possible outcomes of species interactions with native and exotic mammalian herbivores. Using these two herbivore test cases, we make two predictions to create testable hypotheses across systems and taxa: First, adaptive traits of tolerance or resistance to herbivory will be fewer when exotic species feed on plant species with which they have no evolutionary history. Second, historical constraints of species interactions will allow for negative feedbacks to stabilize the effects of herbivory by a native species. Overall, these two case studies illustrate that plant resistance and tolerance traits can mediate the indirect consequences of herbivory on associated interacting species. Specifically, when there is no evolutionary history between the plants and herbivores, which is often the case with species introductions, the effects of herbivory are more likely to reduce genetic variation and habitat mosaics, thus indirectly affecting associated species.  相似文献   

10.
Tolerance, the degree to which plant fitness is affected by herbivory, is associated with invasiveness and biological control of introduced plant species. It is important to know the evolutionary changes in tolerance of invasive species after introduction in order to understand the mechanisms of biological invasions and assess the feasibility of biological control. While many studies have explored the evolutionary changes in resistance of invasive species, little has been done to address tolerance. We hypothesized that compared with plants from native populations, plants from invasive populations may increase growth and decrease tolerance to herbivory in response to enemy release in introduced ranges. To test this hypothesis, we compared the differences in growth and tolerance to simulated herbivory between plants from invasive and native populations of Chromolaena odorata, a noxious invader of the tropics and subtropics, at two nutrient levels. Surprisingly, flower number, total biomass (except at high nutrient), and relative increase in height were not significantly different between ranges. Also, plants from invasive populations did not decrease tolerance to herbivory at both nutrient levels. The invader from both ranges compensated fully in reproduction after 50?% of total leaf area had been damaged, and achieved substantial regrowth after complete shoot damage. This strong tolerance to damage was associated with increased resource allocation to reproductive structures and with mobilization of storage reserves in roots. The innately strong tolerance may facilitate invasion success of C. odorata and decrease the efficacy of leaf-feeding biocontrol agents. Our study highlights the need for further research on biogeographical differences in tolerance and their role in the invasiveness of exotic plants and biological control.  相似文献   

11.
The Enemy Release hypothesis holds that exotic plants may have an advantage over native plants because their specialized natural enemies are absent. We tested this hypothesis by measuring leaf damage and plant abundance for naturally-occurring plants in prairies, and by removing natural enemies in an enemy exclusion experiment. We classified plants as invasive exotic, noninvasive exotic, or native, to determine if their degree of invasiveness influenced their relationships with natural enemies. Our field surveys showed that invasive exotic plants generally had significantly lower levels of foliar damage than native species while there was no consistent pattern for noninvasive exotics compared to natives. The relationship between damage and abundance was different for exotic and native plants: foliar damage decreased with increasing abundance for exotic plants while the trend was positive for native plants. While these results from the field surveys supported the Enemy Release Hypothesis, the enemy exclusion experiment did not. There was no relationship between a species?? status as exotic or native and its degree of release from herbivory. Pastinaca sativa, the invasive exotic in this experiment, experienced gains in leaf area and vegetative biomass when treated with pesticides, indicating substantial herbivore pressure in the introduced range. These results show that foliar damage may not accurately predict the amount of herbivore pressure that plants actually experience, and that the Enemy Release hypothesis is not sufficient to explain the invasiveness of P. sativa in prairies.  相似文献   

12.
Facilitation, both by inter‐ and intra‐specific neighbours, is known to be an important process in structuring plant communities. However, only a small number of experiments have been reported on facilitation in plant invasions, especially between invasive con‐specific individuals. Here, we focus on how con‐specific neighbours of the invasive alien plant alligator weed affect the tolerance of alligator weed to herbivory by the introduced biological control agent, Agasicles hygrophila. We conducted greenhouse and garden experiments in which invasive plant density and herbivory intensity (artificial clipping and real herbivory) were manipulated. In the greenhouse experiment, artificial clipping significantly reduced plant biomass when plants were grown individually, but when con‐specific neighbours were present in the same pot, biomass was not significantly different from control plants. Similarly, when compared to control plants, plants that were subjected to herbivory by A. hygrophila produced more biomass when grown with two con‐specific neighbours than when grown alone. Real herbivory also resulted in an increased number of vegetative buds, and again when two con‐specific neighbours were present this effect was increased (a 55.3% increase in buds when there was no neighbour, but a 111.6% increase in buds when two con‐specific neighbours were present). In the garden experiment, in which plants were grown at high density (6 plants per pot), alligator weed fully recovered from defoliation caused by insects at levels from 20–30% to 100%. Our results indicate that the con‐specific association may increase the compensatory ability to cope with intense damage in this invasive plant.  相似文献   

13.
Herbivory has been long considered an important component of plant-animal interactions that influences the success of invasive species in novel habitats. One of the most important hypotheses linking herbivory and invasion processes is the enemy-release hypothesis, in which exotic plants are hypothesized to suffer less herbivory and fitness-costs in their novel ranges as they leave behind their enemies in the original range. Most evidence, however, comes from studies on leaf herbivory, and the importance of flower herbivory for the invasion process remains largely unknown. Here we present the results of a meta-analysis of the impact of flower herbivory on plant reproductive success, using as moderators the type of damage caused by floral herbivores and the residence status of the plant species. We found 51 papers that fulfilled our criteria. We also included 60 records from unpublished data of the laboratory, gathering a total of 143 case studies. The effects of florivory and nectar robbing were both negative on plant fitness. The methodology employed in studies of flower herbivory influenced substantially the outcome of flower damage. Experiments using natural herbivory imposed a higher fitness cost than simulated herbivory, such as clipping and petal removal, indicating that studies using artificial herbivory as surrogates of natural herbivory underestimate the real fitness impact of flower herbivory. Although the fitness cost of floral herbivory was high both in native and exotic plant species, floral herbivores had a three-fold stronger fitness impact on exotic than native plants, contravening a critical element of the enemy-release hypothesis. Our results suggest a critical but largely unrecognized role of floral herbivores in preventing the spread of introduced species into newly colonized areas.  相似文献   

14.
Aim Theory suggests that introduced species that are phylogenetically distant from their recipient communities should be more successful than closely related introduced species because they can exploit open niches and escape enemies in their new range, i.e. Darwin’s Naturalization Hypothesis. Alternatively, it has also been hypothesized that closely related invaders might be more successful than novel invaders because they are pre‐adapted to conditions in their new range; a paradox coined Darwin’s Naturalization Conundrum. To date, these hypotheses have been tested primarily at the regional scale, not within local plant communities where introduced species colonize, compete and encounter herbivores. Location Global. Methods and Results We used community phylogenetics to analyse data from 49 published experiments to examine the importance of phylogenetic relatedness and generalist herbivory on native and exotic plant success at the community level. Plants that were categorized as ‘invasive’ were indeed less related to the recipient community than ‘non‐pest’ exotic plants. Distantly related exotic plants were also more abundant than closely related species. Phylogenetic relatedness predicted herbivore impact, but in a way that was opposite to predictions, as herbivores had stronger, not lesser, impacts on distantly related plants. Importantly, these same patterns generally held for native plants, as distantly related native plants were more abundant and more susceptible to herbivores than closely related species, ultimately resulting in herbivores suppressing community‐level phylogenetic diversity. Main conclusions Distantly related plants were more locally successful despite experiencing stronger control by generalist herbivores, a finding that was robust across native and exotic species. To our knowledge, this is the first evidence that phylogenetic matching influences the local success of both native and exotic species and that herbivores can influence community phylodiversity. Phylogenetic relatedness explained a relatively small portion of the variance in the data even after taking herbivory into account, however, suggesting that phylogenetic matching works in combination with other factors to influence community assembly.  相似文献   

15.
Abstract The enemies release hypothesis proposes that exotic species can become invasive by escaping from predators and parasites in their novel environment. Agrawal et al. (Enemy release? An experiment with congeneric plant pairs and diverse above‐ and below‐ground enemies. Ecology, 86, 2979–2989) proposed that areas or times in which damage to introduced species is low provide opportunities for the invasion of native habitat. We tested whether ornamental settings may provide areas with low levels of herbivory for trees and shrubs, potentially facilitating invasion success. First, we compared levels of leaf herbivory among native and exotic species in ornamental and natural settings in Cincinnati, Ohio, United States. In the second study, we compared levels of herbivory for invasive and noninvasive exotic species between natural and ornamental settings. We found lower levels of leaf damage for exotic species than for native species; however, we found no differences in the amount of leaf damage suffered in ornamental or natural settings. Our results do not provide any evidence that ornamental settings afford additional release from herbivory for exotic plant species.  相似文献   

16.
Two venerable hypotheses, widely cited as explanations for either the success or failure of introduced species in recipient communities, are the natural enemies hypothesis and the biotic resistance hypothesis. The natural enemies hypothesis posits that introduced organisms spread rapidly because they are liberated from their co‐evolved predators, pathogens and herbivores. The biotic resistance hypothesis asserts that introduced species often fail to invade communities because strong biotic interactions with native species hinder their establishment and spread. We reviewed the evidence for both of these hypotheses as they relate to the importance of non‐domesticated herbivores in affecting the success or failure of plant invasion.
To evaluate the natural enemies hypothesis, one must determine how commonly native herbivores have population‐level impacts on native plants. If native herbivores seldom limit native plant abundance, then there is little reason to think that introduced plants benefit from escape from these enemies. Studies of native herbivore‐native plant interactions reveal that plant life‐history greatly mediates the strength with which specialist herbivores suppress plant abundance. Relatively short‐lived plants that rely on current seed production for regeneration are most vulnerable to herbivory that reduces seed production. As such, these plants may gain the greatest advantage from escaping their specialist enemies in recipient communities. In contrast, native plants that are long lived or that possess long‐lived seedbanks may not be kept “in check” by native herbivores. For these species, escape from native enemies may have little to do with their success as exotics; they are abundant both where they are native and introduced.
Evidence for native herbivores providing biotic resistance to invasion by exotics is conflicting. Our review reveals that: 1) introduced plants can attract a diverse assemblage of native herbivores and that 2) native herbivores can reduce introduced plant growth, seed set and survival. However, the generality of these impacts is unclear, and evidence that herbivory actually limits or reduces introduced plant spread is scarce. The degree to which native herbivores provide biotic resistance to either exotic plant establishment or spread may be greatly determined by their functional and numerical responses to exotic plants, which we know little about. Generalist herbivores, through their direct effects on seed dispersal and their indirect effects in altering the outcome of native–non‐native plant competitive interactions, may have more of a facilitative than negative effect on exotic plant abundance.  相似文献   

17.
The understory is a diverse component of temperate forest ecosystems, contributing significantly to forest ecosystem services. Despite their importance, many native understories face stresses from current and past land use, habitat fragmentation, invasive species, and overabundant herbivores. We established a four block, three factor experiment to evaluate the relative contribution of native plant establishment, competitive effects from the invasive herb garlic mustard (Alliaria petiolata), and herbivory from white-tailed deer (Odocoileus virginianus) to better understand the mechanisms promoting low native plant richness and cover and understory dominance by the biennial exotic herb garlic mustard in a NE Wisconsin, USA forest. Four years of garlic mustard removal failed to increase native plant richness or cover in non-restored plots. However, deer access and the introduction of native plants (restoration treatment) both significantly enhanced native plant cover and richness, with restored species cover in fenced plots approximately 216 % that of open-access plots, and the majority of these species flowered at significantly higher proportions inside of fenced areas. In contrast, deer access did not significantly alter the cover, or seed production of garlic mustard. We also found no significant effect of garlic mustard presence on the cover or flowering of restored native species. We conclude that multiple factors, including limited natural establishment by native species and selective herbivory drove low native, high exotic dominance at our site, suggesting that a shift in focus from invasive plant removal to combined native plant restoration and herbivore control is needed to maximize the recovery of this degraded forest understory.  相似文献   

18.
In a field experiment with 30 locally occurring old‐field plant species grown in a common garden, we found that non‐native plants suffer levels of attack (leaf herbivory) equal to or greater than levels suffered by congeneric native plants. This phylogenetically controlled analysis is in striking contrast to the recent findings from surveys of exotic organisms, and suggests that even if ‘enemy release’ does accompany the invasion process, this may not be an important mechanism of invasion, particularly for plants with close relatives in the recipient flora.  相似文献   

19.
Evolutionary responses of native plants to novel community members   总被引:4,自引:0,他引:4  
Both ecological and evolutionary processes can influence community assembly and stability, and native community members may respond both ecologically and evolutionarily as additional species enter established communities. Biological invasions provide a unique opportunity to examine these responses of native community members to novel species additions. Here, I use reciprocal transplant experiments among naturally invaded and uninvaded environments, along with experimental removals of exotic species, to determine whether exotic plant competitors and exotic insect herbivores evoke evolutionary changes in native plants. Specifically, I address whether the common native plant species Lotus wrangelianus has responded evolutionarily to a series of biological invasions by adapting to the presence of the exotic plant Medicago polymorpha and the exotic insect herbivore Hypera brunneipennis. Despite differences in selection regimes between invaded and uninvaded environments and the presence of genetic variation for traits relevant to the novel competitive and plant-herbivore interactions, these experiments failed to reveal evidence that Lotus has responded evolutionarily to the double invasion of Medicago followed by H. brunneipennis. However, when herbivory from H. brunneipennis was experimentally reduced, Lotus plants from source populations invaded by Medicago outperformed plants from uninvaded source populations when transplanted into heavily invaded destination environments. Therefore, Lotus showed evidence of adaptation to Medicago invasion but not to the newer invasion of an exotic shared herbivore. The presence of this exotic insect herbivore alters the outcome of evolutionary responses in this system and counteracts adaptation by the native Lotus to invasion by the exotic plant Medicago. This result has broad implications for the conservation of native communities. While native species may be able to adapt to the presence of one or a few exotics, a multitude of invasions may limit the ability of natives to respond evolutionarily to the novel and frequently changing selection pressures that arise with subsequent invasions.  相似文献   

20.
During introduction, invasive plants can be released from specialist herbivores, but may retain generalist herbivores and encounter novel enemies. For fast-growing invasive plants, tolerance of herbivory via compensatory regrowth may be an important defense against generalist herbivory, but it is unclear whether tolerance responses are specifically induced by different herbivores and whether specificity differs among native and invasive plant populations. We conducted a greenhouse experiment to examine the variation among native and invasive populations of Chinese tallow tree, Triadica sebifera, in their specificity of tolerance responses to herbivores by exposing plants to herbivory from either one of two generalist caterpillars occurring in the introduced range of Triadica. Simultaneously, we measured the specificity of another defensive trait, extrafloral nectar (EFN) production, to detect potential tradeoffs between resistance and tolerance of herbivores. Invasive populations had higher aboveground biomass tolerance than native populations, and responded non-specifically to either herbivore, while native populations had significantly different and specific aboveground biomass responses to the two herbivores. Both caterpillar species similarly induced EFN in native and invasive populations. Plant tolerance and EFN were positively correlated or had no relationship and biomass in control and herbivore-damaged plants was positively correlated, suggesting little costs of tolerance. Relationships among these vegetative traits depended on herbivore type, suggesting that some defense traits may have positive associations with growth-related processes that are differently induced by herbivores. Importantly, loss of specificity in invasive populations indicates subtle evolutionary changes in defenses in invasive plants that may relate to and enhance their invasive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号