首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The xynA gene encoding a xylanase from the recently isolated Bacillus sp. strain BP-7 has been cloned and expressed in Escherichia coli. Recombinant xylanase A showed high activity on xylans from hardwoods and cereals, and exhibited maximum activity at pH 6 and 60°C. The enzyme remained stable after incubation at 50°C and pH 7 for 3 h, and it was strongly inhibited by Mn2+, Fe3+, Pb2+, and Hg2+. Analysis of xylanase A in zymograms showed an apparent molecular size of 24 kDa and a pI of above 9. The amino acid sequence of xylanase A, as deduced from xynA gene, shows homology to alkaline pI-low molecular weight xylanases of family 11 such as XynA from Bacillus subtilis. Analysis of codon usage in xynA from Bacillus sp. BP-7 shows that the G+C content at the first and second codon positions is notably different from the mean values found for glycosyl hydrolase genes from Bacillus subtilis.  相似文献   

2.
α-Mannosidase (EC. 3.2.1.114) belonging to class II glycosyl hydrolase family 38 was purified from Moringa oleifera seeds to apparent homogeneity by conventional protein purification methods followed by affinity chromatography on Con A Sepharose and size exclusion chromatography. The purified enzyme is a glycoprotein with 9.3 % carbohydrate and exhibited a native molecular mass of 240 kDa, comprising two heterogeneous subunits with molecular masses of 66 kDa (α-larger subunit) and 55 kDa (β-smaller subunit). Among both the subunits only larger subunit stained for carbohydrate with periodic acid Schiff’s staining. The optimum temperature and pH for purified enzyme was 50 °C and pH 5.0, respectively. The enzyme was stable within the pH range of 3.0–7.0. The enzyme was inhibited by EDTA, Hg2+, Ag2+, and Cu2+. The activity lost by EDTA was completely regained by addition of Zn2+. The purified enzyme was characterized in terms of the kinetic parameters K m (1.6 mM) and V max (2.2 U/mg) using para-nitrophenyl-α-D-mannopyranoside as substrate. The enzyme was very strongly inhibited by swainsonine (SW) at 1 μM concentration a class II α-Mannosidase inhibitor, but not by deoxymannojirimycin (DMNJ). Chemical modification studies revealed involvement of tryptophan at active site. The inhibition by SW and requirement of the Zn2+ as a metal ion suggested that the enzyme belongs to class II α-Mannosidase.  相似文献   

3.
The HschiA1 gene of the archaeon Halobacterium salinarum CECT 395 was cloned and overexpressed as an active protein of 66.5 kDa in Escherichia coli. The protein called HsChiA1p has a modular structure consisting of a glycosyl hydrolase family 18 catalytic region, as well as a N-terminal family 5 carbohydrate-binding module and a polycystic kidney domain. The purified recombinant chitinase displayed optimum catalytic activity at pH 7.3 and 40 °C and showed high stability over broad pH (6–8.5) and temperature (25–45 °C) ranges. Protein activity was stimulated by the metal ions Mg+2, K+, and Ca+2 and strongly inhibited by Mn+2. HsChiA1p is salt-dependent with its highest activity in the presence of 1.5 M of NaCl, but retains 20 % of its activity in the absence of salt. The recombinant enzyme hydrolysed p-NP-(GlcNAc)3, p-NP-(GlcNAc), crystalline chitin, and colloidal chitin. From its sequence features and biochemical properties, it can be identified as an exo-acting enzyme with potential interest regarding the biodegradation of chitin waste or its bioconversion into biologically active products.  相似文献   

4.
A novel esterase gene (e25) was identified from Altererythrobacter epoxidivorans CGMCC 1.7731T by genome sequence screening. The e25 gene is 948 nucleotides in length and encodes a 315?amino acid protein (E25) with a predicted molecular mass of 33,683 Da. A phylogenetic tree revealed that E25 belongs to the hormone-sensitive lipase (HSL) family of lipolytic enzymes. An activity assay of E25 showed that it exhibited the highest catalytic efficiency when using p-nitrophenyl caproate (C6) as a substrate. The optimum pH and temperature were determined to be approximately pH 9 and 45°C, and the Km and Vmax values were 0.12?mM and 1,772?µmol/min/mg, respectively. After an incubation at 40°C for 80?min, E25 retained 75% of its basal activity. The enzyme exhibited good tolerance to metal cations, such as Ba2+, Ca2+, and Cu2+ (10?mM), but its activity was strongly inhibited by Co2+, Ni2+, Mn2+, and Zn2+. The E25 enzyme was stimulated by glycerol and retained over 60% of its basal activity in the presence of 1% Tween-80 and Triton X-100. Overall, the activity of E25 under alkaline conditions and its organic solvent and detergent tolerance indicate that E25 could be useful as a novel industrial catalyst in biotechnological applications.  相似文献   

5.
A gene encoding a novel chitinase chi58 was cloned from the fungus Chaetomium cupreum by using inverse PCR. The DNA sequence of chi58 contains a 1,602 bp open reading frame and two introns that are 52 and 201 bp in length. Regarding our in silico analysis, chi58 is a modular enzyme composed of a family-18 catalytic domain, which is responsible for chitinase activity, and a chitin-binding domain containing several cysteines. Apparently, the function of these domains is to anchor the enzyme tightly onto the large insoluble polymeric substrate. Chi58 has a pI of 4.47 and a deduced molecular mass of 58 kDa. The optimal pH and temperature conditions were determined to be 5.8 and 45°C, respectively, when colloidal chitin was used as the substrate. SDS-PAGE and zymogram analyses indicated the presence of a single active chitinase. Cells with pPIC9K-chi58 produced an extracellular chitinase that had an activity of 39 U/ml protein. Metal ions such as Ba2+, Mg2+, K+, Cu2+, Fe3+, Zn2+, and Co2+ also influenced the activity of the recombinant enzyme.  相似文献   

6.
A putative aminopeptidase P gene (TM0042, Swissport Q9WXP9, GeneBank AAD35136) of Thermotoga maritima was cloned and expressed in Escherichia coli BL21 (RIL). The enzyme was purified by the combination of ion exchange chromatography; Q-Sepharose and Mono-Q column. The purified recombinant T. maritima aminopeptidase P enzyme, gave a homogenous protein band with an apparent molecular weight of 40 kDa in SDS-PAGE analysis. The enzyme was purified 23-fold with the specific activity of 16.5 unit/mg with the final recovery of 22%. The enzyme was thermostable up to 90 °C for 30 min. An optimal activity was observed at 90 °C at pH 7.5. The purified enzyme was stable between pH 6.5 and 8 at 80 °C with the optimum of pH 7.5. Based on the amino acid sequence, the enzyme belongs to M 24B family of metalloenzymes. None of the divalent cations enhance the activity of the enzyme while Pb2+, Cu2+, Co2+, Cd2+, and Zn2+ were inhibitory to the enzyme activity. Divalent cation of Mg2+ showed 100% enzyme activity, to a lesser extent, Ca2+ and Mn2+ whereas strong inhibition of enzyme activity was observed with Zn2+ and Cd2+. The enzyme designated as putative aminopeptidase P was very low activity in hydrolyzing proline-p-nitroanilide. Kinetic studies on the purified enzyme confirmed that the enzyme is a leucine aminopeptidase. Enzyme also hydrolyzes lysine-p-nitroanilide with efficiency comparable to that of leucine-p-nitroanilide. This is the first report of leucine aminopeptidase with lysine-p-nitroanilide hydrolyzing activity, which belongs to the M 24B family of metalloenzymes.  相似文献   

7.
Adenosine kinase (ATP:adenosine 5′-phosphotransferase, EC 2.7.1.20) from Lupinus luteus seeds has been obtained with good yield in almost homogeneous state by ammonium sulfate fractionation, chromatography on aminohexyl-Sepharose, and gel filtration. Active enzyme is a single polypeptide chain with a molecular weight of about 38,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel nitration. Estimated molecular activity is 156. The enzyme exhibits a strict requirement for divalent metal ions. Among several ions tested the following appeared to be active as cofactors: Co2+ ? Mn2+ > Mg2+ = Ca2+ ? Ni2+ > Ba2+. The optimal metal ion concentrations were as follows: Mn2+, 0.5 mm, Mg2+ and Ca2+, 1 mm, Co2+, 1.5 mm. The adenosine kinase shows optimum activity at pH 7.0–7.5. Km values for adenosine and ATP are 1.5 × 10?6 and 3 × 10?4m, respectively. Lupin adenosine kinase is completely inhibited by antisulfhydryl reagents. ATP is the main phosphate donor and among other nucleoside triphosphates ITP, dATP, GTP, and XTP can substitute it but less effectively. Among the ribo- and deoxyribonucleosides occurring in nucleic acids adenosine is phosphorylated effectively and 2′-deoxyadenosine at a lower rate. Of other adenosine analogs tested all adenine d-nucleosides and purine derivative ribosides, besides those with a hydroxyl group at C-6, were found to be substrates for lupin adenosine kinase. Pyrimidine ribo- and deoxyribonucleosides were not phosphorylated.  相似文献   

8.
A metagenomic library was generated using microbial DNA extracted from the rumen contents of a grass hay-fed dairy cow using a bacterial artificial chromosome-based vector system. Functional screening of the library identified a gene encoding a potent glycoside hydrolase, xyn10N18, localised within a xylanolytic gene cluster consisting of four open-reading frames (ORFs). The ORF, xyn10N18, encodes an endo-β-1,4-xylanase with a glycosyl hydrolase family 10 (GH10) catalytic domain, adopts a canonical α8/ß8-fold and possesses conserved catalytic glutamate residues typical of GH10 xylanases. Xyn10N18 exhibits optimal catalytic activity at 35 °C and pH 6.5 and was highly stable to pH changes retaining at least 85 % relative catalytic activity over a broad pH range (4.0–12.0). It retained 25 % of its relative activity at both low (4 °C) and high (55 °C) temperatures, however the stability of the enzyme rapidly decreased at temperatures of >40 °C. The specific activity of Xyn10N18 is enhanced by the divalent cations Mn2+ and Co2+ and is dramatically reduced by Hg2+ and Cu2+. Interestingly, EDTA had little effect on specific activity indicating that divalent cations do not function mechanistically. The enzyme was highly specific for xylan containing substrates and showed no catalytic activity against cellulose. Analysis of the hydrolysis products indicated that Xyn10N18 was an endoxylanase. Through a combination of structural modelling and in vitro enzyme characterisation this study provides an understanding of the mechanism and the substrate specificity of this enzyme serving as a starting point for directed evolution of Xyn10N18 and subsequent downstream use in industry.  相似文献   

9.
A novel malate dehydrogenase (MDH; EC 3.1.1.1.37), hereafter MDHCs, from Ceratonia siliqua seeds, commonly known as Carob tree, was purified by using ammonium sulphate precipitation, ion exchange chromatography on SteamLine SP and gel-filtration. The molecular mass of the native protein, obtained by analytical gel-filtration, was about 65?kDa, whereas, by using SDS-PAGE analysis, with and without reducing agent, was 34?kDa. The specific activity of purified MDHCs (0.25?mg/100?g seeds) was estimated to be 188 U/mg. The optimum activity of the enzyme is at pH 8.5, showing a decrease in the presence of Ca2+, Mg2+ and NaCl. The N-terminal sequence of the first 20 amino acids of MDHCs revealed 95?% identity with malate dehydrogenase from Medicago sativa L. Finally, the enzymatic activity of MDHCs was preserved even after absorption onto a PVDF membrane. To our knowledge, this is the first contribution to the characterization of an enzyme from Carob tree sources.  相似文献   

10.
Trehalose is a unique disaccharide capable of protecting proteins against environmental stress. A novel trehalose synthase (TreS) gene from Rhodococcus opacus was cloned and expressed in Escherichia coli Top10 and BL21 (DE3) pLysS, respectively. The recombinant TreS showed a molecular mass of 79 kDa. Thin layer chromatography (TLC) result suggested that this enzyme had the ability to catalyze the mutual conversion of maltose and trehalose. Moreover, high-performance liquid chromatography (HPLC) result suggested that glucose appeared as a byproduct with a conversion rate of 12 %. The purified recombinant enzyme had an optimum temperature of 25 °C and pH optimum around 7.0. Kinetic analysis revealed that the K m for trehalose was around 98 mM, which was a little higher than that of maltose. The preferred substrate of TreS was maltose according to the analysis of k cat/K m. Both 1 and 10 mM of Hg2+, Cu2+ and Al3+ could inhibit the TreS activity, while only 1 mM of Ca2+ and Mn2+ could increase its activity. Five amino acid residues, Asp244, Glu286, Asp354, His147 and His353, were shown to be conserved in R. opacus TreS, which were also important for α-amylase family enzyme catalysis.  相似文献   

11.
A novel dioscin-α-l-rhamnosidase was isolated and purified from fresh bovine liver. The activity of the enzyme was tested using diosgenyl-2,4-di-O-α-l-rhamnopyranosyl-β-d-glucopyranoside as a substrate. It was cleaved by the enzyme to two compounds, rhamnoses and diosgenyl-O-β-d-glucopyranoside. The optimal conditions for enzyme activity were that temperature was at 42 °C, pH was at 7, reaction time was at 4 h, and the substrate concentration was at 2%. Furthermore, metal ions such as Fe3+, Cu2+, Zn2+, Ca2+ and Mg2+ showed different effects on the enzyme activity. Mg2+ acted as an activator whereas Cu2+, Fe3+, and Zn2+ acted as strong inhibitors in a wide range of concentrations from 0 to 200 mM. It was interesting that Ca2+ played a role as an inhibitor when its concentration was at 10 mM and acted as an activator at the other concentrations for the enzyme. Moreover, the molecular weight of enzyme was determined as 75 kDa.  相似文献   

12.
Esterase is the key enzyme involved in microbial degradation of phthalate esters (PAEs). In this study, an intracellular esterase was purified from a coastal sediment fungus Fusarium sp. DMT-5-3 capable of utilizing dimethyl terephthalate (DMT) as a substrate. The purified enzyme is a polymeric protein consisting of two identical subunits with a molecular mass of about 84 kDa. The enzyme showed a maximum esterase activity at 50 °C and was stable below 30 °C. The optimal pH was 8.0 and the enzyme was stable between pH 6.0 and 10.0. The esterase activity was inhibited by Cr3+, Hg2+, Cu2+, Zn2+, Ni2+, and Cd2+. Substrate specificity analysis showed that the enzyme was specific to DMT hydrolysis, but had no effect on other isomers of dimethyl phthalate esters (DMPEs) or monomethyl phthalate esters (MMPEs). These findings suggest that the phthalate esterase produced by Fusarium sp. DMT-5-3 is inducible and distinctive esterases involved in hydrolysis of the two carboxylic ester linkages of DMPEs.  相似文献   

13.
Aspergillus niger LOCK 62 produces an antifungal chitinase. Different sources of chitin in the medium were used to test the production of the chitinase. Chitinase production was most effective when colloidal chitin and shrimp shell were used as substrates. The optimum incubation period for chitinase production by Aspergillus niger LOCK 62 was 6?days. The chitinase was purified from the culture medium by fractionation with ammonium sulfate and affinity chromatography. The molecular mass of the purified enzyme was 43?kDa. The highest activity was obtained at 40?°C for both crude and purified enzymes. The crude chitinase activity was stable during 180?min incubation at 40?°C, but purified chitinase lost about 25?% of its activity under these conditions. Optimal pH for chitinase activity was pH 6–6.5. The activity of crude and purified enzyme was stabilized by Mg2+ and Ca2+ ions, but inhibited by Hg2+ and Pb2+ ions. Chitinase isolated from Aspergillus niger LOCK 62 inhibited the growth of the fungal phytopathogens: Fusarium culmorum, Fusarium solani and Rhizoctonia solani. The growth of Botrytis cinerea, Alternaria alternata, and Fusarium oxysporum was not affected.  相似文献   

14.
An l-amino acid oxidase (Akbu-LAAO) was isolated from the venom of Agkistrodon blomhoffii ussurensis snake using DEAE Sephadex A-50 ion-exchange, Sephadex G-75 gel filtration, and high performance liquid chromatographies. The homogeneity and molecular mass of Akbu-LAAO were analyzed by SDS-PAGE and MALDI-TOF spectrometry. The sequences of ten peptides from Akbu-LAAO were established by HPLC-nESI-MS/MS analysis. Protein sequence alignment indicated that i) that Akbu-LAAO is a new snake venom LAAO, and ii) Akbu-LAAO shares homology with several LAAOs from the venoms of Calloselasma rhodost, Agkistrodon halys, Daboia russellii siamensis, and Trimeresurus stejnegeri. Akbu-LAAO is a homodimer with a molecular mass of ∼124.4 kDa. It reacts optimally with its enzymatic substrate, Leu, at pH 4.7 with a Km of 2.1 mM. ICP-AES measurements showed that Akbu-LAAO contains four Zn2+ per dimer that are unessential for the hydrolytic activity of the enzyme. The emission fluorescence intensity of Akbu-LAAO decreases by 61% on removal of Zn2+ indicating that the zinc probably helps maintain the structural integrity of the enzyme. The addition of exogenous metal ions, including Mg2+, Mn2+, Ca2+, Ce3+, Nd3+, Co2+ and Tb3+, increases the l-Leu hydrolytic activity of the enzyme. Akbu-LAAO shows apparent anti-aggregation effects on human and rabbit platelets. It exhibits a strong bacteriostasis effect on Staphylococcus aureus, eighteen fold that of cephalosporin C under the same conditions. Taken together, the biochemical, proteomic, structural and functional characterizations reveal that Akbu-LAAO is a novel LAAO with promise for biotechnological and medical applications.  相似文献   

15.
An acidophilic and Ca2+-independent amylase was purified from a newly isolated Bacillus sp. DR90 by ion-exchange chromatography, and exhibited a molecular weight of 68.9 kDa by SDS-PAGE. The optimum pH and temperature of the enzyme were found to be 4.0 and 45 °C, respectively. The enzyme activity was increased by Ba2+, Fe2+ and Mg2+, and decreased by Hg2+ and Zn2+, while it was not affected by Na+, K+, phenylmethylsulfonyl fluoride and β-mercaptoethanol. Ca2+ and EDTA did not have significant effect on the enzyme activity and thermal stability. The values of K m and V max for starch as substrate were 4.5 ± 0.13 mg/ml and 307 ± 12 μM/min/mg, respectively. N,N-dialkylimidazolium-based ionic liquids such as 1-hexyl-3-methylimidazolium bromide [HMIM][Br] have inhibitory effect on the enzyme activity. Thin layer chromatography analyses displayed that maltose and glucose are the main products of the enzyme reaction on starch. Regarding the features of the enzyme, it may be utilized as a novel candidate for industrial applications.  相似文献   

16.
Magnesium-dependent adenosine triphosphatase has been purified from sheep kidney medulla plasma membranes. The purification, which is based on treatment of a kidney plasma membrane fraction with 0.5% digitonin in 3 mm MgCl2, effectively separates the Mg2+-ATPase from (Na+ + K+)-ATPase present in the same tissue and yields the Mg2+-ATPase in soluble form. The purified enzyme is activated by a variety of divalent cations and trivalent cations, including Mg2+, Mn2+, Ca2+, Co2+, Fe2+, Zn2+, Eu3+, Gd3+, and VO2+. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme shows two bands with Rf values corresponding to molecular weights of 150,000 and 77,000. The larger peptide is phosphorylated by [γ-32P]ATP, suggesting that this peptide may contain the active site of the Mg2+-ATPase. The Mg2+-ATPase activity is unaffected by the specific (Na+ + K+)-ATPase inhibitor ouabain.  相似文献   

17.
18.
Undecaprenyl pyrophosphate synthetase was partially purified from Lactobacillus plantarum by DEAE-cellulose, hydroxyapatite, and Sephadex G-100 chromatography in Triton X-100. The enzyme has a molecular weight between 53,000 and 60,000. The enzyme demonstrated a fivefold preference for farnesyl pyrophosphate rather than geranyl pyrophosphate as the allylic cosubstrate, whereas dimethylallyl pyrophosphate was not effective as a substrate. Polyprenyl pyrophosphates obtained using either farnesyl or geranyl pyrophosphate as cosubstrate were chromatographically identical. Hydrolysis of these polyprenyl pyrophosphates with either a yeast or liver phosphatase preparation yielded undecaprenol as the major product. Incorporation of radioactive label from mixtures of Δ3-[1-14C]isopentenyl pyrophosphate and Δ3-2R-[2-3H]isopentenyl pyrophosphate into enzymic product indicated that each isoprene unit added to the allylic pyrophosphate substrate has a cis configuration about the newly formed double bond. The removal of detergent from enzyme solutions resulted in a parallel loss in enzyme activity when analyzed with either farnesyl or geranyl pyrophosphate as cosubstrates. Enzymic activity was restored on addition of Triton X-100 or deoxycholate. The enzyme exhibited a pH-activity profile with optima at pH 7.5 and 10.2. It also demonstrated a divalent cation requirement, with Mg2+, Mn2+, Zn2+, and Co2+ exhibiting comparable activities.  相似文献   

19.
An extracellular lipase (EC 3.1.1.3), SAL-PP1, from Staphylococcus aureus isolated from Arachis hypogaea rhizosphere was purified and characterized. The enzyme was purified using PALL'S Microsep centrifugal device (10 kD cut off), hydrophobic interaction (phenyl sepharose CL-4B column) and Superose-12 gel filtration chromatography and found to have a molecular mass of around 49 kDa. The gene fragment encoding the part of the catalytic site of the SAL-PP1 lipase was sequenced and the deduced amino acid sequence shows 93% identity with that of SEL3. SAL-PP1 showed activity against long acyl-chain triglycerides, various p-nitrophenyl esters and phospholipids. The enzyme shows high stability and activity after incubation with various metal ions (retained >90% activity in presence of Ca2+, Na+, Cu2+, Mg2+, Fe2+, or Hg2+ at 10 mM), organic solvents (retained >80% activity in presence of acetonitrile, ethanol, DMSO, methanol, isopropanol, toluene, or ethylene glycol at 10 mM), detergents (retained >70% activity in Triton X-100, Tween 80, or sodium deoxycholate at 10 mM) and irreversible inhibitors (retained >77% activity in presence of PMSF, leupetin, or β-mercaptoethanol, at 1 mM). Thermal inactivation studies revealed a temperature dependent unfolding of secondary structure of protein. SAL-PP1 showed maximal activity and stability at pH 8.0 and pH 9.0, respectively. The alkali-thermostability, organic solvent-tolerance and broad substrate specificity of this enzyme may have potential implications in detergent formulations, biotransformation, industries, and medicine.  相似文献   

20.
5′-AMP nucleotidase activity accumulates during the culmination stage of development in a thin layer of cells at the prestalk-prespore interface of Dictyostelium discoideum. In this report we characterize a highly purified preparation of this enzyme in an attempt to determine the physiological significance of the accumulation and localization of the activity during cellular differentiation. A pH optimum of 9.5 was determined using nine different buffer systems tested over a range of pH from 3 to 13.5. The Michaelis constants for p-nitrophenylphosphate (NPP) and 5′-AMP were 1.8 and 1.2 mm, respectively. Substrate concentrations of 5′-AMP in excess of 2.5 mm were found to inhibit the activity. Little or no effect on the activity of the enzyme was observed in the presence of EDTA, Mg2+, Mn2+, Ca2+, Fe2+, or Zn2+ ions. However, the enzyme appears to be a zinc metalloprotein as evidenced by its inhibition with 1,10-phenanthroline and recovery of activity in the presence of zinc. Other inhibitors of enzymatic activity include dithiothreitol and imidazole. The enzyme was bound by calcium phosphate, but could not be immobilized on matricies containing other substrate or product analogs, including 5′-AMP, cyclic AMP, ATP, phenylalanine, blue dextran, and Procion Red HE3B. The hydrophobicity of 5′-AMP nucleotidase was demonstrated by its strong affinity for immobilized alkyl and ω-amino alkyl ligands, as well as phenyl Sepharose. Isoelectric focusing of the enzyme in granulated gel required both the presence of detergent to prevent aggregate formation and precipitation of the enzyme, and the addition of zinc after focusing to reverse Ampholine inhibition. Apparently, Ampholine chelates zinc away from the enzyme much like 1,10-phenanthroline. Using this method, the isoelectric point of 5′-AMP nucleotidase was found to be 4.5–4.9, with a 30% recovery of the applied activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号