首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated circulating interleukin-6 (IL6) and up-regulated S100P in prostate cancer (PCa) specimens correlate independently with progression to androgen-independent and metastatic PCa. The cause of up-regulated S100P levels in advanced PCa remains to be determined. We investigated the possibility that IL6 is an inducer of S100P. Determination of mRNA and protein levels by real-time PCR and Western blotting revealed that IL6 is a more potent inducer of S100P than the synthetic androgen, R1881, in the LNCaP/C4-2B model of PCa progression. IL6 did not require androgen to induce S100P in these cells, which express a functional androgen receptor (AR). Like R1881, IL6 was unable to induce S100P in PC3 cells that lack a functional AR. IL6 did not strongly induce the AR-dependent genes PSA and KLK2 and, contrary to R1881, down-regulated Cyr61/CCN1, a potential marker that is down-regulated in PCa. Epidermal growth factor (EGF), which like IL6 is a non-androgen activator of the AR, did not induce S100P. The data identifies a unique gene-induction profile for IL6 and suggests that IL6 may require a functional AR for S100P induction. A link between elevated IL6 and up-regulated S100P in androgen-refractory and metastatic PCa is postulated.  相似文献   

2.
3.
4.
5.
Aberrant androgen receptor (AR) signaling plays a critical role in androgen-dependent prostate cancer (PCa), as well as in castration-resistant PCa (CRPC). Oxidative stress seems to contribute to the tumorigenesis and progression of PCa, as well as the development of CRPC, via activation of AR signaling. This notion is supported by the fact that there is an aberrant or improper regulation of the redox status in these disorders. Additionally, androgen-deprivation-induced oxidative stress seems to be involved in the pathogenesis of several disorders caused by androgen-deprivation therapy (ADT), including osteoporosis, neurodegenerative disease, and cardiovascular disease. Oxidative stress can be suppressed with antioxidants or via a reduction in reactive oxygen species production. Thus, developing new therapeutic agents that reduce oxidative stress might be useful in preventing the conversion of androgen-dependent PCa into CRPC, as well as reducing the adverse effects associated with ADT. The objective of this review is to provide an overview regarding the relationship between oxidative stress and AR signaling in the context of PCa and especially CRPC. Additionally, we discuss the potential use of antioxidant therapies in the treatment of PCa.  相似文献   

6.
Versican, one of the key components of prostatic stroma, plays a central role in tumor initiation and progression. Here, we investigated promoter elements and mechanisms of androgen receptor (AR)-mediated regulation of the versican gene in prostate cancer cells. Using transient transfection assays in prostate cancer LNCaP and cervical cancer HeLa cells engineered to express the AR, we demonstrate that the synthetic androgen R1881 and dihydrotestosterone stimulate expression of a versican promoter-driven luciferase reporter vector (versican-Luc). Further, both basal and androgen-stimulated versican-Luc activities were significantly diminished in LNCaP cells, when AR gene expression was knocked down using a short hairpin RNA. Methylation-protection footprinting analysis revealed an AR-protected element between positions +75 and +102 of the proximal versican promoter, which strongly resembled a consensus steroid receptor element. Electrophoretic mobility shift and supershift assays revealed strong and specific binding of the recombinant AR DNA binding domain to oligonucleotides corresponding to this protected DNA sequence. Site-directed mutagenesis of the steroid receptor element site markedly diminished R1881-stimulated versican-Luc activity. In contrast to the response seen using LNCaP cells, R1881 did not significantly induce versican promoter activity and mRNA levels in AR-positive prostate stromal fibroblasts. Interestingly, overexpression of beta-catenin in the presence of androgen augmented versican promoter activity 10- and 30-fold and enhanced versican mRNA levels 2.8-fold in fibroblasts. In conclusion, we demonstrate that AR transactivates versican expression, which may augment tumor-stromal interactions and may contribute to prostate cancer progression.  相似文献   

7.
8.
The LNCaP-FGC (fast growing colony) cell line, a subline derived from the LNCaP cell line, shares all the main characteristics, including its androgen sensitivity, described for the parental line. A number of sublines originating from the FGC line were characterized with respect to their response to steroid-depleted medium and to the synthetic androgen R1881. The growth of FGC cells in DCC medium with 0.1 nM R1881 was stimulated 2-3-fold compared to growth in DCC medium only. FGC cells that were continuously grown in DCC medium did not die, but their growth rate was clearly slowed down, and the cells remained responsive to androgen. These cells, therefore, have the androgen-sensitive, rather than the androgen-dependent phenotype. As cells of the subline FGC-JB could not be maintained in DCC medium, these cells better represent the androgen-dependent cell type. In contrast to the FGC line, cells of the R line, grew equally well in medium with complete or DCC serum. Under none of these culture conditions, R cells could significantly be stimulated further with R1881. Further analysis of the LNCaP-FGC sublines should provide valuable information concerning the development of androgen resistance in human prostate cancer.  相似文献   

9.
10.
Optic nerve head (ONH) astrocytes from patients with glaucomatous optic neuropathy exhibit increased production of 5alpha-androstane-3alpha,17beta-diol (3alpha-diol), a neuroactive metabolite of 5alpha-dihydrotestosterone (5alpha-DHT). To determine whether ONH astrocytes are androgen target cells, and whether 3alpha-diol is capable of regulating astrocyte functions, we studied the response of human ONH astrocytes to 3alpha-diol compared with 17beta-hydroxy-17alpha-methyl-estra-4,9,11-trien-3-one (R1881), a synthetic 5alpha-DHT agonist. In ONH astrocytes, both 3alpha-diol and R1881 increased protein levels of androgen receptor (AR) and glial fibrillary acidic protein (GFAP), however, only R1881 also increased the AR mRNA level and astrocyte proliferation. Both R1881 and 3alpha-diol rapidly activate the mitogen-activated protein kinase (MAPK) signaling pathway in ONH astrocytes, as confirmed by phosphorylation of extracellular signal-regulated kinase (ERK). 3Alpha-diol also activates the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. 3Alpha-diol regulates the increase of AR protein level and the phosphorylation through the PI3K/Akt pathway, whereas R1881 regulates them through the MAPK/ERK pathway. Our findings demonstrate that human ONH astrocytes are androgen target cells and respond to androgens by the rapid activation of cell signaling. The activation of the PI3K/Akt pathway by 3alpha-diol may regulate various properties of astrocytes, including cell motility and survival, and may play a role in the formation and maintenance of the reactive phenotype of ONH astrocytes in glaucoma.  相似文献   

11.
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.  相似文献   

12.
White button mushroom (WBM) (Agaricus bisporus) is a potential prostate cancer (PCa) chemo-preventative and therapeutic agent. Our clinical phase І trial of WBM powder in patients with biochemically recurrent PCa indicated that WBM intake reduced the circulating levels of prostate-specific antigen (PSA). We hypothesized that WBM exerts its effects on PCa through the androgen receptor (AR) signaling axis. Therefore, we conducted a reverse translational study with androgen-dependent PCa cell lines (LNCaP and VCaP) and patient-derived-xenografts (PDX) from a prostate tumor (TM00298). In both LNCaP and VCaP cells, western blots and qRT-PCR assays indicated that WBM extract (6–30 mg/mL) suppressed DHT-induced PSA expression and cell proliferation in a dose-dependent manner. Immunofluorescence analysis of AR revealed that WBM extract interrupted the AR nuclear-cytoplasmic distribution. PSA promotor-luciferase assay suggested that WBM extract inhibited DHT-induced luciferase activity. RNA-Seq on WBM-treated LNCaP cells confirmed that WBM treatment suppressed the androgen response pathways and cell-cycle control pathways. Our PDX showed that oral intake of WBM extract (200 mg/kg/d) suppressed tumor growth and decreased PSA levels in both tumors and serum. In the present study, we also identified a conjugated linoleic acid isomer (CLA-9Z11E) as a strong AR antagonist by performing LanthaScreen TR-FRET AR Coactivator Interaction Assays. The inhibitory effect of CLA-9Z11E (IC50: 350 nM) was nearly two times stronger than the known AR antagonist, cyproterone acetate (IC50: 672 nM). The information gained from this study improves the overall understanding of how WBM may contribute to the prevention and treatment of PCa.  相似文献   

13.
14.
15.
Endocrine therapy for prostate cancer (PCa) mainly inhibits androgen receptor (AR) signaling, due to increased androgen synthesis and AR changes, PCa evolved into castration-resistant prostate cancer (CRPC). The function of Family With Sequence Similarity 64 Member A (FAM64A) and its association with prostate cancer has not been reported. In our research, we first reported that FAM64A is up-regulated and positively associated with poor prognosis of patients with prostate cancer (PCa) by TCGA database and immunohistochemistry staining. Moreover, knockdown of FAM64A significantly suppressed the proliferation, migration, invasion, and cell cycle of PCa cells in vitro. Mechanistically, FAM64A expression was increased by dihydrotestosterone (DHT) through direct binding of AR to FAM64A promoter, and notably promoted the proliferation, migration, invasion, and cell cycle of androgen-dependent cell line of PCa. In addition, abnormal expression of FAM64A affects the immune and interferon signaling pathway of PCa cells. In conclusion, FAM64A was up-regulated by AR through directly binding to its specific promoter region to promote the development of PCa, and was associated with the immune mechanism and interferon signaling pathway, which provided a better understanding and a new potential for treating PCa.Subject terms: Penile cancer, Predictive markers  相似文献   

16.
Many recent evidences indicate that androgen-sensitive prostate cancer cells have a lower malignant phenotype that is in particular characterized by a reduced migration and invasion. We previously demonstrated that expression of androgen receptor (AR) by transfection of the androgen-independent prostate cancer cell line PC3 decreases invasion and adhesion of these cells (PC3-AR) through modulation of alpha6beta4 integrin expression. The treatment with the synthetic androgen R1881 further reduced invasion of the cells without, however, modifying alpha6beta4 expression on the cell surface, suggesting an interference with the invasion process in response to EGF. We investigated whether the presence of the AR could affect EGF receptor (EGFR)-mediated signaling in response to EGF by evaluating autotransphosphorylation of the receptor as well as activation of downstream signalling pathways. Immunoprecipitation studies demonstrated a reduction of EGF-induced tyrosine phosphorylation of EGFR in PC3-AR cells. In addition, EGF-stimulated PI3K activity, a key signalling pathway for invasion of these cells, was decreased in PC3-AR cells and further reduced by treatment with R1881, indicating decreased functionality of EGFR. An interaction between EGFR and AR has been demonstrated by immunoconfocal and co-immunoprecipitation analysis in PC3-AR cells, suggesting a possible interference of AR on EGFR signalling by interaction of the two proteins. In conclusion, our results suggest that the expression of AR by transfection in PC3 cells confers a less malignant phenotype by interfering with EGFR autophosphorylation and signalling in response to EGF leading to invasion through a mechanism involving an interaction between AR and EGFR.  相似文献   

17.
The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management. Besides, very high androgen levels also inhibit PCa cells’ growth, so this effect could also be applied in PCa therapy. However, on the molecular and cellular level, these mechanisms have hardly been investigated so far. Therefore, the present study describes the effects of varying androgen concentrations on the viability of PCa cells as well as localization, transactivation, and protein stability of the AR. For this purpose, cell viability was determined via WST1 assay. Alterations in AR transactivity were detected by qPCR analysis of AR target genes. A fluorescent AR fusion protein was used to analyse AR localization microscopically. Changes in AR protein expression were detected by Western blot. Our results showed that high androgen concentrations reduce the cell viability in LNCaP and C4-2 cell lines. In addition, androgens have been reported to increase AR transactivity, AR localization, and AR protein expression levels. However, high androgen levels did not reduce these parameters. Furthermore, this study revealed an androgen-induced increase in AR protein synthesis. In conclusion, inhibitory effects on cell viability by high androgen levels are due to AR downstream signalling or non-genomic AR activity. Moreover, hormonal activation of the AR leads to a self-induced stabilization of the receptor, resulting in increased AR activity. Therefore, in clinical use, a therapeutic reduction in androgen levels represents a clinical target and would lead to a decrease in AR activity and, thus, AR-driven PCa progression.  相似文献   

18.

Background

Prostate cancer (PCa) is the most frequently diagnosed cancer in North American men. Androgen-deprivation therapy (ADT) accentuates the infiltration of immune cells within the prostate. However, the immunosuppressive pathways regulated by androgens in PCa are not well characterized. Arginase 2 (ARG2) expression by PCa cells leads to a reduced activation of tumor-specific T cells. Our hypothesis was that androgens could regulate the expression of ARG2 by PCa cells.

Methodology/Principal Findings

In this report, we demonstrate that both ARG1 and ARG2 are expressed by hormone-sensitive (HS) and hormone-refractory (HR) PCa cell lines, with the LNCaP cells having the highest arginase activity. In prostate tissue samples, ARG2 was more expressed in normal and non-malignant prostatic tissues compared to tumor tissues. Following androgen stimulation of LNCaP cells with 10 nM R1881, both ARG1 and ARG2 were overexpressed. The regulation of arginase expression following androgen stimulation was dependent on the androgen receptor (AR), as a siRNA treatment targeting the AR inhibited both ARG1 and ARG2 overexpression. This observation was correlated in vivo in patients by immunohistochemistry. Patients treated by ADT prior to surgery had lower ARG2 expression in both non-malignant and malignant tissues. Furthermore, ARG1 and ARG2 were enzymatically active and their decreased expression by siRNA resulted in reduced overall arginase activity and l-arginine metabolism. The decreased ARG1 and ARG2 expression also translated with diminished LNCaP cells cell growth and increased PBMC activation following exposure to LNCaP cells conditioned media. Finally, we found that interleukin-8 (IL-8) was also upregulated following androgen stimulation and that it directly increased the expression of ARG1 and ARG2 in the absence of androgens.

Conclusion/Significance

Our data provides the first detailed in vitro and in vivo account of an androgen-regulated immunosuppressive pathway in human PCa through the expression of ARG1, ARG2 and IL-8.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号