首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Catechins are polyphenolic antioxidants found in green tea leaves. Recent studies have reported that various polyphenolic compounds, including catechins, cause protein carbonyl formation in proteins via their pro-oxidant actions. In this study, we evaluate the formation of protein carbonyl in human serum albumin (HSA) by tea catechins and investigate the relationship between catechin chemical structure and its pro-oxidant property. To assess the formation of protein carbonyl in HSA, HSA was incubated with four individual catechins under physiological conditions to generate biotin-LC-hydrazide labeled protein carbonyls. Comparison of catechins using Western blotting revealed that the formation of protein carbonyl in HSA was higher for pyrogallol-type catechins than the corresponding catechol-type catechins. In addition, the formation of protein carbonyl was also found to be higher for the catechins having a galloyl group than the corresponding catechins lacking a galloyl group. The importance of the pyrogallol structural motif in the B-ring and the galloyl group was confirmed using methylated catechins and phenolic acids. These results indicate that the most important structural element contributing to the formation of protein carbonyl in HSA by tea catechins is the pyrogallol structural motif in the B-ring, followed by the galloyl group. The oxidation stability and binding affinity of tea catechins with proteins are responsible for the formation of protein carbonyl, and consequently the difference in these properties of each catechin may contribute to the magnitude of their biological activities.  相似文献   

2.
Promethazine is known to have protective activity in relation to CCl4-induced liver necrosis. This hepatoprotective property has been investigated with regard to the free radical scavenging and antioxidant properties of promethazine using isolated hepatocytes and microsomal suspensions. CCl4 is activated in both systems to free radical metabolites that bind covalently to lipid and protein, and initiate lipid peroxidation. A large number of carbonyl products is produced during CCl4-induced lipid peroxidation; promethazine strongly inhibits the production of all classes of carbonyl compounds in both microsomal suspensions and isolated hepatocytes. In contrast, promethazine is a very weak inhibitor of the covalent binding of metabolites of CCl4. We conclude that promethazine acts by scavenging the trichloromethylperoxyl radical and lipid peroxyl radicals, and is a weak scavenger of the trichloromethyl radical. These data, when considered together with the hepatoprotective effects of promethazine, suggest that lipid peroxidation is of relatively more importance than covalent binding in the pathogenesis of CCl4-induced liver necrosis.  相似文献   

3.
The impact of Lactobacillus paracasei IMC502 co-fermented with traditional starters on metabolites in yogurt was evaluated using metabolomic analysis. Forty-four volatile metabolites were determined using headspace solid phase microextraction and gas chromatography-mass spectrometry, including alcohols, esters, organic acids, carbonyl and sulfur compounds. Acetaldehyde, diacetyl, acetoin, acetone, butanoic and acetic acid were present in yogurts in higher intensity, which are the major volatile metabolites related to yogurt flavor. L. paracasei IMC502 did not affect the amounts of acetaldehyde, diacetyl and acetoin while promoted the formation of acetone and butanoic acid. A total of 196 non-volatile metabolites including nucleosides, amino acids, carbohydrates, lipids were analyzed using UPLC-Q-TOF-MS. Non-volatile metabolite profiles of these two types of yogurts were distinguished and 94 differential metabolites were screened using multivariate statistical analysis, which were mainly associated with the biosynthesis of secondary metabolites, amino acid metabolism and nucleotide metabolism. The impact of storage on metabolites was also investigated. The amounts of the majority of carbonyl compounds, organic acids and free amino acids increased, while those of acetaldehyde, diacetyl and lactose decreased during storage. This study provides insights into the metabolic mechanism of L. paracasei and represents a real advance in the study of the metabolites in yogurt.  相似文献   

4.
Incubation of Cunninghamella elegans ATCC 9245 and the anti ulcer drug omeprazole allowed putative fungal metabolites to be isolated in sufficient quantities for structural elucidation. Three metabolites produced by the fungi were isolated using semi-preparative HPLC and their structures identified by a combination of LC/MS(n) and NMR experiments. These isolates will be used as reference standards in the confirmatory analysis of mammalian metabolites of this drug.  相似文献   

5.
Four metabolites of okadaic acid were generated by incubation with human recombinant cytochrome P450 3A4. The structures of two of the four metabolites have been determined by MS/MS experiments and 1D and 2D NMR methods using 94 and 133 μg of each metabolite. The structure of a third metabolite was determined by oxidation to a metabolite of known structure. Like okadaic acid, the metabolites are inhibitors of protein phosphatase PP2A. Although one of the metabolites does have an α,β unsaturated carbonyl with the potential to form adducts with an active site cysteine, all of the metabolites are reversible inhibitors of PP2A.  相似文献   

6.
Metabolic profiling of tissues needs special attention, because the compartmentalization of cellular constituents will be abolished by sample homogenization. This loss of partitioning leads to protein and metabolite instability in extracts, and therefore metabolite extraction protocols need to ensure very rapid inactivation of macromolecules as well as solubilization of metabolites. There are many published methods for tissue metabolome analysis, but no universally accepted standard, and a lack of measurable quality benchmarks. We developed a protocol for efficient tissue disruption and metabolite extraction of the earthworm Lumbricus rubellus guided by prior biological knowledge as well as metrics based on the data. In particular, we identified an unusual degree of instability of L. rubellus tissue extracts, and evaluated different approaches such as heating and filtration to counteract this. Finally, we evaluated four different solvent systems for comprehensive metabolite extraction using three analytical platforms (1H NMR spectroscopy, GC?CMS, and direct-infusion FT-ICR-MS), and also compared bead-beating and cryogenic milling for tissue disruption. Initially we ranked methods by common analytical criteria (e.g. numbers and total intensity of detected peaks) in order to compare protocols. These approaches to assess protocol suitability proved to be inadequate to judge earthworm tissue extraction methods because of sample instability. Existing tissue extraction protocols should not be assumed to be automatically applicable to novel species.  相似文献   

7.
The catalytic activity of methionine aminopeptidase-2 (MetAP2) has been pharmacologically linked to cell growth, angiogenesis, and tumor progression, making this an attractive target for cancer therapy. An assay for monitoring specific protein changes in response to MetAP2 inhibition, allowing pharmacokinetic (PK)/pharmacodynamic (PD) models to be established, could dramatically improve clinical decision-making. Candidate MetAP2-specific protein substrates were discovered from undigested cell culture-derived proteomes by MALDI-/SELDI-MS profiling and a biochemical method using (35)S-Met labeled protein lysates. Substrates were identified either as intact proteins by FT-ICR-MS or applying in-gel protease digestions followed by LC-MS/MS. The combination of these approaches led to the discovery of novel MetAP2-specific substrates including thioredoxin-1 (Trx-1), SH3 binding glutamic acid rich-like protein (SH3BGRL), and eukaryotic elongation factor-2 (eEF2). These studies also confirmed glyceraldehye 3-phosphate dehydrogenase (GAPDH) and cyclophillin A (CypA) as MetAP2 substrates. Additional data in support of these proteins as MetAP2-specific substrates were provided by in vitro MetAP1/MetAP2 enzyme assays with the corresponding N-terminal derived peptides and 1D/2D Western analyses of cellular and tissue lysates. FT-ICR-MS characterization of all intact species of the 18 kDa substrate, CypA, enabled a SELDI-MS cell-based assay to be developed for correlating N-terminal processing and inhibition of proliferation. The MetAP2-specific protein substrates discovered in this study have diverse properties that should facilitate the development of reagents for testing in preclinical and clinical environments.  相似文献   

8.
青霉属(Penicillium)真菌属于腐生类真菌,是自然界中一类重要的分解者。其可以产生多种多样的次级代谢产物。这些结构新颖、功能特殊的次级代谢产物在抗菌、抗氧化、抗肿瘤等药物开发中发挥重要作用,主要由聚酮类、生物碱、萜类、大环内酯等化学结构类型组成。本文综述了青霉属真菌次级代谢产物的结构类型以及丰富的生物药用活性,该内容可为后续青霉属真菌新型天然药物的开发提供研究思路。  相似文献   

9.
Norcantharidin (NCTD), the demethylated analogue of cantharidin, inhibits the proliferation of a variety of human tumor cell lines, and appears to cause the least nephrotoxic and inflammatory side effects. Although NCTD has been used to treat human cancers in China for years, there is no report regarding its metabolism up to now. This is the first report to separate and identify the main metabolites of NCTD in vivo by GC-MS using TMS derivatives. Two hydrolyzed products and five phase I or phase II metabolites were found in rat by the chromatogram comparisons of the blank with incurred biological samples. Multiple stages of fragmentation patterns were used to confirm the metabolites characterizations. The established GC-MS method can also be applied to identifying unknown metabolites of the drugs containing hydroxyl or carbonyl groups in molecular structure.  相似文献   

10.
The molecular structures and barriers for the internal rotation around the OC-CO single bond in four alpha-ketoamides and eight alpha-ketocarbonyls have been determined from the MP3/aug-cc-pVDZ and MP2/aug-cc-pVDZ calculations. Alpha-ketocarbonyls with non-bulky substituents adopt planar conformations with two carbonyl oxygens in s-trans arrangement. The s-cis conformation is significantly less stable due to the electrostatic repulsion between the two carbonyl groups. Primary and secondary alpha-ketoamides are planar when the substituent at the carbonyl carbon is hydrogen or methyl group but tertiary alpha-ketoamides adopt a conformation where the OC-CO unit is significantly bent. Based on current ab initio structural data, a set of OPLS-AA force field parameters has been derived. These parameters can be used for the modeling of a variety of alpha-ketoamide or alpha-ketocarbonyl containing drugs such as novel protease inhibitors or neuroregenerative polyketides.  相似文献   

11.
Prostaglandin 9-ketoreductase (PG-9-KR) was purified from pig kidney to homogeneity, as judged by SDS/PAGE using an improved procedure. The enzyme is pro-S stereoselective with regard to hydrogen transfer from NADPH with prostaglandin E2 as substrate and reduces its 9-keto group with approximately 90% stereoselectivity to form prostaglandin F2 alpha. Approximately 8% of the prostaglandin F formed has the beta-configuration. In addition to catalyzing the interconversion of prostaglandin E2 to F2 alpha, PG-9-KR also oxidizes prostaglandin E2, F2 alpha and D2 to their corresponding, biologically inactive, 15-keto metabolites. Incubation of PG-9-KR with prostaglandin F2 alpha and NAD+ leads to the preferential formation of 15-keto prostaglandin F2 alpha rather than prostaglandin E2. This suggests that the prostaglandin E2/prostaglandin F2 alpha ratio is not determined by the NADP+/NADPH redox couple. The enzyme also reduces various other carbonyl compounds (e.g. 9,10-phenanthrenequinone) with high efficiency. The catalytic properties measured for PG-9-KR suggest that its in vivo function is unlikely to be to catalyze formation of prostaglandin F2 alpha. The monomeric enzyme has a molecular mass of 32 kDa and exists as four isoforms, as judged by isoelectric focusing. PG-9-KR contains 1.9 mol Zn2+/mol enzyme and no other cofactors. Human kidney PG-9-KR was also purified to homogeneity. The human enzyme has a molecular mass of 34 kDa and also exists as four isoforms. Polyclonal antibodies raised against pig kidney PG-9-KR cross-react with human kidney PG-9-KR and also with human brain carbonyl reductase, as demonstrated by Western blot analysis. Sequence data of tryptic peptides from pig kidney PG-9-KR show greater than 90% identity with human placenta carbonyl reductase. From comparison of several properties (catalytical, structural and immunological properties), it is concluded that PG-9-KR and carbonyl reductase are identical enzymes.  相似文献   

12.
Increased resistance of pathogens toward existing antibiotics has compelled the research efforts to introduce new antimicrobial substances. Drugs with new and less resistant-prone targets to antimicrobial activity have a high priority for drug development activities. Cell membrane seems to be a potential target for new antibiotic agent development to overcome resistance. In this study, A total number of 67 actinomycetes were isolated from the soil samples collected from desert, farming and mineral parts of Iran. We used a chromatic sensor as a membrane model that was set up for the target of antimicrobial metabolites of actinomycetes isolated from the soil. The sensors particles were composed of phospholipid and polymerized polydiacetylene (PDA) lipids. These polymers exhibited color change following interaction with membrane-active metabolites. The color change was due to structural disorder in the lipids following their interaction with membrane-active metabolites. The resultant color change was recorded by fluorescent microscope and easily recognizable by naked eye as well. Sixteen strains were isolated which produced antimicrobial metabolites and were effective against test microorganisms (Escherichia coli, Candida albicans and Saccharomyces cerevisiae ). A total number of 3 out of 16 strains produced membrane-active metabolites. These 3 strains were identified using 16s rRNA as Streptomyces sp and submitted to GenBank (accession no. JN180853; JN180854; JN180855).  相似文献   

13.
Evidence is reported for the existence of a structurally and functionally related and probably evolutionarily conserved class of membrane-bound liver carbonyl reductases/hydroxysteroid dehydrogenases involved in steroid and xenobiotic carbonyl metabolism. Carbonyl reduction was investigated in liver microsomes of 8 vertebrate species, as well as in insect larvae total homogenate and in purified 3 alpha-hydroxysteroid dehydrogenase preparations of the procaryont Pseudomonas testosteroni, using the ketone compound 2-methyl-1,2 di-(3-pyridyl)-1-propanone (metyrapone) as substrate. The enzyme activities involved in the metyrapone metabolism were screened for their sensitivity to several steroids as inhibitors. In all fractions tested, steroids of the adrostane or pregnane class strongly inhibited xenobiotic carbonyl reduction, whereas only in the insect and procaryotic species could ecdysteroids inhibit this reaction. Immunoblot analysis with antibodies against the respective microsomal mouse liver metyrapone reductase revealed strong crossrections in all fractions tested, even in those of the insect and the procaryont. A similar crossreaction pattern was achieved when the same fractions were incubated with antibodies against 3 alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. The mutual immunoreactivity of the antibody species against proteins from vertebrate liver microsomes, insects and procaryonts suggests the existence of structural homologies within these carbonyl reducing enzymes. This is further confirmed by limited proteolysis of purified microsomal mouse liver carbonyl reductase and subsequent analysis of the peptide fragments with antibodies specifically purified by immunoreactivity against this respective crossreactive antigen. These immunoblot experiments revealed a 22 kDa peptide fragment which was commonly recognized by all antibodies and which might represent a conserved domain of the enzyme.  相似文献   

14.
Inhibition of human peroxidase enzymes such as myeloperoxidase or eosinophil peroxidase represents a novel therapeutic area, for which there are no current clinical therapeutics. We utilized 4-aminobenzoic acid hydrazide which was reported to be a potent irreversible inhibitor of myeloperoxidase to gain insight into the role of reactive metabolites in catalytic inhibition. In order to carry out detailed studies, we used a model peroxidase, microperoxidase-11 (MP-11). We investigated the heme spectrum of MP-11 in the presence of 4-ABAH and found that heme bleaching occurred that was irreversible. This coincided with an absence of catalytic activity. The spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was able to significantly prevent inactivation of peroxidase activity, therefore, we performed ESR spin trapping studies and detected a carbonyl carbon-centered radical of 4-ABAH. In order to determine if the free radical metabolites became bound to MP-11, we performed high-resolution MALDI with elemental analysis to determine the change in elemental composition that occurred in these reactions. These masses were assigned to free radical metabolites of 4-ABAH and were not observed in reactions containing DMPO. We conclude that the 4-ABAH free radical metabolites which were bound to MP-11 were involved in the catalytic inhibition and were scavenged by DMPO.  相似文献   

15.
The cytotoxic effect of aldehydic metabolites of linoleic acid, 13-oxo-tridecadienoic acids, on MCF-7 human breast cancer cells was investigated. The metabolites inhibited the growth of the cancer cells and the effect was dependent on both time of exposure and concentration of the metabolites; 50% growth inhibition occurred at approximately 55 and 33 microM, after 3- and 5-day incubations, respectively. The metabolites had greater cytotoxicity than parent linoleic acid or other polyunsaturated fatty acids tested. The antiproliferative effect was partially reversed by 10 microM of dithiothreitol suggesting that attack on thiol groups in cancer cells by highly reactive alpha, beta-unsaturated carbonyl moiety in the metabolites was responsible for the cytotoxic actions.  相似文献   

16.

Background  

Stable isotope tracing with ultra-high resolution Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) can provide simultaneous determination of hundreds to thousands of metabolite isotopologue species without the need for chromatographic separation. Therefore, this experimental metabolomics methodology may allow the tracing of metabolic pathways starting from stable-isotope-enriched precursors, which can improve our mechanistic understanding of cellular metabolism. However, contributions to the observed intensities arising from the stable isotope's natural abundance must be subtracted (deisotoped) from the raw isotopologue peaks before interpretation. Previously posed deisotoping problems are sidestepped due to the isotopic resolution and identification of individual isotopologue peaks. This peak resolution and identification come from the very high mass resolution and accuracy of FT-ICR-MS and present an analytically solvable deisotoping problem, even in the context of stable-isotope enrichment.  相似文献   

17.
We developed a highly accurate method to predict polyketide (PK) and nonribosomal peptide (NRP) structures encoded in microbial genomes. PKs/NRPs are polymers of carbonyl/peptidyl chains synthesized by polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We analyzed domain sequences corresponding to specific substrates and physical interactions between PKSs/NRPSs in order to predict which substrates (carbonyl/peptidyl units) are selected and assembled into highly ordered chemical structures. The predicted PKs/NRPs were represented as the sequences of carbonyl/peptidyl units to extract the structural motifs efficiently. We applied our method to 4529 PKSs/NRPSs and found 619 PKs/NRPs. We also collected 1449 PKs/NRPs whose chemical structures have been determined experimentally. The structural sequences were compared using the Smith-Waterman algorithm, and clustered into 271 clusters. From the compound clusters, we extracted 33 structural motifs that are significantly related with their bioactivities. We used the structural motifs to infer functions of 13 novel PKs/NRPs clusters produced by Pseudomonas spp. and Burkholderia spp. and found a putative virulence factor. The integrative analysis of genomic and chemical information given here will provide a strategy to predict the chemical structures, the biosynthetic pathways, and the biological activities of PKs/NRPs, which is useful for the rational design of novel PKs/NRPs.  相似文献   

18.
The consumption of tomatoes and tomato products has been associated with a reduction in the risk of contracting some types of cancer and other chronic diseases. These beneficial properties may be attributed to the presence of key metabolites and the interactions among them. We have developed and validated an analytical method for the comprehensive profiling of semi-polar metabolites in the methanol extract of three cultivars of raw tomatoes (Daniela, Raf and Rambo) grown in Almería, in south-east Spain. Diode-array and time-of-flight/ion-trap mass spectrometry detectors were used to ensure the wide detection of metabolites with highly divergent properties. The masses thus detected were assigned by matching their accurate mass-signals with tomato compounds reported in the literature, and supplemented by UV and MS/MS information, reference compounds and existing metabolite databases. In this way we were able to identify tentatively 135 compounds belonging to various structural classes, 21 of which are to our knowledge reported for the first time in the tomato fruit. Among the metabolites identified, the most abundant were phenolic compounds. This class of secondary metabolites is attracting considerable attention from producers and consumers due to their antioxidant activity and nutritional properties. Their quantitative analysis was achieved by using closely related derivatives for each family.  相似文献   

19.
Strong anion-exchange (SAX) chromatography and reversed-phase liquid chromatography (RPLC) followed by different mass spectrometric techniques for the separation and identification of conjugated and unconjugated 14C-labelled eltanolone (5β-Pregnan-3α-ol-20-one) metabolites in biological fluids are presented. Conjugates of estradiol were used as model compounds for the development of a SAX based group separation of neutral steroids, glucuronides, sulfates and di-conjugated steroids. The usefulness of the technique is demonstrated by the analysis of 14C-labelled eltanolone metabolites in dog urine. The analytical SAX column used prior to RPLC improved the capacity to separate the metabolites from each other and from endogenous components, compared to a single reversed-phase system. Liquid chromatography negative ion electrospray-mass spectrometry (LC–ESI-MS) was used for the molecular mass determination of conjugated eltanolone metabolites. Unconjugated metabolites and hydrolysed conjugates were identified using gas chromatography–mass spectrometry with an electron impact ion source (GC–MS) after trimethylsilyl (TMS) derivatization. An unexpected finding in dog urine was the diglucuronide formation of eltanolone (presumably after enolisation of its carbonyl group).  相似文献   

20.
Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号