首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
? Premise of the study: Patterns of spatial genetic structure (SGS) were analyzed within a population of the endangered tropical tree Guaiacum sanctum located in northwestern Costa Rica. Documentation of these patterns provides insights into the gene dispersal mechanisms that play a central role in the maintenance and structure of genetic diversity within plant populations. ? Methods: Allozyme analyses were used to examine SGS in Palo Verde National Park, Costa Rica. The SGS was compared among three plots and different age classes. ? Key results: High levels of genetic diversity were found overall with a pooled genetic diversity of H(e) = 0.302 (±0.02). Selfing was proposed as the proximate cause for significant levels of heterozygote deficiency observed across size classes and plots. An unexpected lack of SGS (r(j) < 0.02) was observed for all size classes, suggesting the mixing of seeds from several adults. A parent-pair parentage analysis indicated that at least 48% of the smaller individuals within a plot were produced by parents located at distances of at least 150 m. ? Conclusions: Populations of G. sanctum are established and maintained by bird-mediated, moderate- to long-distance seed dispersal, which results in a mixture of seeds from unrelated maternal individuals, effectively eliminating SGS. Proximity between individuals is, therefore, a poor predictor of family structure in this species. Long-distance seed dispersal, coupled with estimates of high genetic diversity, suggests that this endangered species has the potential for natural regeneration and restoration given the availability of suitable habitats.  相似文献   

2.
In this study we compared population structure, genetic diversity and fine-scale spatial genetic structure (SGS) in four Bignoniaceae tree species, Handroanthus chrysotrichus, H. impetiginosus, Tabebuia roseoalba and H. serratifolius in a remnant of seasonally dry tropical forest in Central-West Brazil, based on polymorphisms at six microsatellite loci. All species, except T. roseoalba, presented the inverted ‘J’ population structure indicating recruitment of juveniles. Juveniles presented a clumped distribution suggesting limitation in dispersal or patchy distribution of suitable microhabitat for recruitment. All species showed high levels of polymorphism and genetic diversity but without a clear pattern of distribution among life stages. The SGS was significant for all species, except T. roseoalba, but the pattern and strength of the spatial genetic structure differed among species. Handroanthus serratifolius had stronger SGS with significant kinship until 77 m. For H. impetiginosus and H. chrysotrichus, kinship was significant just until 23 and 6 m, respectively. Despite the high genetic diversity, all species showed low number of adults and high fixation indices suggesting that habitat fragmentation and disturbance have been affecting these populations in Central-West Brazil.  相似文献   

3.
Extensive realized pollen and seed flow across populations reduces inbreeding and spatial genetic structure (SGS) and increases the genetic diversity and effective size within populations. Inbreeding, SGS and realized patterns of pollen and seed dispersal of the dioecious, wind pollinated Araucaria angustifolia were investigated based on microsatellite loci. The study was conducted in a 7.2 ha plot established within a continuous Araucaria Forest in Southern Brazil. In the plot, all 290 adult trees were mapped, measured (diameter at breast height, dbh), sexed, sampled and genotyped. We also sampled, measured (total height), mapped and genotyped 223 juveniles. A total of 86 alleles were detected in the sample (n = 513). Adults and juveniles showed a positive and significant fixation index (minimum of 0.096), suggesting inbreeding or Wahlund effect. Juveniles presented a significant aggregated distribution which was associated with a genetic aggregation (significant SGS up to 20 m), indicating that near neighbor trees may be related due the limited seed dispersal. However, the intensity of SGS was not significantly higher among juveniles (Sp = 0.0041) than adults (Sp = 0.0026). Realized pollen and seed immigration into the plot was low (pollen = 6 %; seeds = 5 %) and the patterns of pollen and seed dispersal were similar. Pollen was dispersed over long distances (343 m), but 50 % was dispersed up to 124 m. Seeds also reached long distances (318 m), with 50 % being dispersed up to 133 m. Our results are discussed in terms of auto-ecology and the genetic conservation of A. angustifolia populations.  相似文献   

4.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

5.
Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.  相似文献   

6.
The Beaver Island Archipelago (BIA) provides a model system to address the impact of long-term isolation on genetic diversity and gene flow. Low lake levels are assumed to have caused the BIA to be attached to mainland Michigan for at least 4000 years (10000 yr B.P.- 6000 yr B.P.), eventually, rising lake levels would have kept the islands isolated since 6000 yr B.P. If the island populations of a plant species in the BIA were indeed once continuous with the mainland of Michigan, then we would expect similar levels of genetic diversity in populations of such a species on the islands vs. the mainland. We compared levels of allozyme genetic diversity of 20 plots of Pinus strobus in the BIA with two mainland populations in northern Michigan. In addition, if pollen is a primary agent of gene flow across islands, a low degree of allozyme differentiation among the island populations of P. strobus in the BIA would be evident. Furthermore, since seed dispersal is more limited than pollen dispersal in P. strobus, a more pronounced spatial genetic structure (SGS) is expected in allozymes than in cpDNA markers. To gain insights on the pattern of seed and pollen dispersal among the 20 plots, we further analyzed spatial autocorrelation using Moran's I-statistics for both data sets [biparentally inherited, allozymes and paternally inherited, cpDNA microsatellites (cpDNA SSR)]. We found a similar level of allozyme variability in both the BIA (mean H e = 0.080) and the two mainland populations (mean H e = 0.078). As predicted, we observed a low but significant degree of genetic divergence among populations for allozymes (mean F ST = 0.033 across 20 plots). Our allozyme-based SGS analysis revealed significant evidence of SGS (i.e. isolation-by-distance; slope β = ?0.194 from regression analysis of observed averaged Moran's I values against the logarithm of the upper bound of six distance classes). In contrast, little evidence of SGS was found in cpDNA SSR data across the BIA (β = 0.013). These results suggest that although gene flow via seed dispersal is somewhat limited, pollen flow has been sufficient to maintain genetic diversity and prevent differentiation across the island landscape over several thousand years of isolation.  相似文献   

7.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

8.
Several demographic factors can produce family structured patches within natural plant populations, particularly limited seed and pollen dispersal and small effective density. In this paper, we used computer simulations to examine how seed dispersal, density, and spatial distribution of adult trees and seedlings can explain the spatial genetic structure (SGS) of natural regeneration after a single reproductive event in a small population. We then illustrated the results of our simulations using genetic (isozymes and chloroplast microsatellites) and demographic experimental data from an Abies alba (silver fir) intensive study plot located in the Southern French Alps (Mont Ventoux). Simulations showed that the structuring effect of limited dispersal on seedling SGS can largely be counterbalanced by high effective density or a clumped spatial distribution of adult trees. In addition, the clumping of natural regeneration far from adult trees, which is common in temperate forest communities where gap dynamics are predominant, further decreases SGS intensity. Contrary to our simulation results, low adult tree density, aggregated spatial distribution of seedlings, and limited seed dispersal did not generate a significant SGS in our A. alba experimental plot. Although some level of long distance pollen and seed flow could explain this lack of SGS, our experimental data confirm the role of spatial aggregation (both in adult trees and in seedlings far from adult trees) in reducing SGS in natural populations.  相似文献   

9.
Spatial genetic structure (SGS) of plants results from the nonrandom distribution of related individuals. SGS provides information on gene flow and spatial patterns of genetic diversity within populations. Seed dispersal creates the spatial template for plant distribution. Thus, in zoochorous plants, dispersal mode and disperser behaviour might have a strong impact on SGS. However, many studies only report the taxonomic group of seed dispersers, without further details. The recent increase in studies on SGS provides the opportunity to review findings and test for the influence of dispersal mode, taxonomic affiliation of dispersers and their behaviour. We compared the proportions of studies with SGS among groups and tested for differences in strength of SGS using Sp statistics. The presence of SGS differed among taxonomic groups, with reduced presence in plants dispersed by birds. Strength of SGS was instead significantly influenced by the behaviour of seed dispersal vectors, with higher SGS in plant species dispersed by animals with behavioural traits that result in short seed dispersal distances. We observed high variance in the strength of SGS in plants dispersed by animals that actively or passively accumulate seeds. Additionally, we found SGS was also affected by pollination and marker type used. Our study highlights the importance of vector behaviour on SGS even in the presence of variance created by other factors. Thus, more detailed information on the behaviour of seed dispersers would contribute to better understand which factors shape the spatial scale of gene flow in animal‐dispersed plant species.  相似文献   

10.
In continuous populations, fine-scale genetic structure tends to be stronger in species with restricted pollen and seed dispersal. However, habitat fragmentation and disturbances can affect genetic diversity and spatial genetic structure due to disruption in ecological processes, such as plant reproduction and seed dispersal. In this study, we compared the genetic diversity and fine-scale spatial genetic structure (SGS) in two populations of Annona crassiflora (Annonaceae) in a pristine savanna Reserve (ESECAE) and in a fragmented disturbed savanna area (PABE), both in Cerrado biome in Central Brazil. The analyses were based on the polymorphism at 10 microsatellite loci. Our working hypothesis was that SGS is stronger and genetic diversity is lower in population at fragmented area (PABE) than at pristine area (ESECAE). Both populations presented high levels of polymorphism and genetic diversity and showed no sign of bottleneck for both Wilcoxon sign-rank test for heterozygosity excess (p > 0.05) and coalescent analyses (growth parameter g not different from zero), but population at fragmented area showed higher fixation index and stronger SGS. Besides, populations are significantly differentiated (F ST = 0.239, R ST = 0.483, p < 0.001 for both). Coalescent analyses showed high historical effective population sizes for both populations, high gene flow between ESECAE and PABE and recent time to most recent common ancestor (~37 k year BP). Our results suggest that despite the high genetic diversity, fragmentation and disturbance may have been affecting populations of this species increasing mating between closely related individuals leading to high fixation index and strong SGS.  相似文献   

11.
Cedrus brevifolia is a narrowly distributed conifer species, currently limited to a single mountain in Cyprus, growing in restricted habitats on sites of different densities and sizes. This study assessed the influence of seed and pollen dispersal, as well as the effect of demographic and genetic features on the magnitude of fine-scale spatial genetic structure (SGS). Sampling was performed in 11 plots where 50 neighboring adult trees were sampled from each plot, while biparentally and paternally inherited genomes were used for analysis with microsatellites. Fine-scale SGS was significant but showed contrasting patterns among plots. Although the magnitude of SGS in C. brevifolia mainly results from restricted seed dispersal, short-distance pollen dispersal could also explain fine-scale SGS in some plots, which is rather uncommon in wind-pollinated conifer species. The lack of a general and consistent trend of SGS among plots and between genomes indicates that pollen and seed dispersal varies at plot level. The complex SGS patterns in C. brevifolia may result from the unequal ratio of male and female strobilies of trees within the same plots, at different reproductive periods. Demographic features such as habitat fragmentation did not influence the magnitude of SGS in C. brevifolia, whereas low tree aggregation reduced it. Further, the significant correlation observed between linkage disequilibrium (LD) and plots with significant SGS supports the assumption that under specific conditions, LD is likely to be caused by the magnitude of SGS.  相似文献   

12.
Understanding the spatial distribution of genetic diversity (i.e., spatial genetic structure [SGS]) within plant populations can elucidate mechanisms of seed dispersal and patterns of recruitment that may play an important role in shaping the demography and spatial distribution of individuals in subsequent generations. Here we investigate the SGS of allozyme diversity in 2 populations of the southeastern North American endemic shrub, Ceratiola ericoides. The data suggest that the 2 populations have similar patterns of SGS at distances of 0-45 m that likely reflect the isolation by distance (IBD) model of seed dispersal. However, at distances >or=50 m, the pattern of SGS differs substantially between the 2 populations. Whereas one population continues to reflect the classical IBD pattern, the second population shows a marked increase in autocorrelation coefficient (r) values at 50-75 m. Furthermore, r values at these distances are as much as 33% higher than at 0-5 m where the highest r value would be predicted by IBD. A likely explanation is the differing frequencies of 2 fruit morphologies in these populations and the greater role that birds play in seed dispersal in the second population.  相似文献   

13.
African rainforests have undergone major distribution range shifts during the Quaternary, but few studies have investigated their impact on the genetic diversity of plant species and we lack knowledge on the extent of gene flow to predict how plant species can cope with such environmental changes. Analysis of the spatial genetic structure (SGS) of a species is an effective method to determine major directions of the demographic history of its populations and to estimate the extent of gene dispersal. This study characterises the SGS of an African tropical timber tree species, Distemonanthus benthamianus, at various spatial scales in Cameroon and Gabon. Displaying a large continuous distribution in the Lower Guinea domain, this is a model species to detect signs of past population fragmentation and recolonization, and to estimate the extent of gene dispersal. Ten microsatellite loci were used to genotype 295 adult trees sampled from eight populations. Three clearly differentiated gene pools were resolved at this regional scale and could be linked to the biogeographical history of the region, rather than to physical barriers to gene flow. A comparison with the distribution of gene pools observed for two other tree species living in the same region invalidates the basic assumption that all species share the same Quaternary refuges and recolonization pathways. In four populations, significant and similar patterns of SGS were detected. Indirect estimates of gene dispersal distances (sigma) obtained for three populations ranged from 400 to 1200 m, whereas neighbourhood size estimates ranged from 50 to 110.  相似文献   

14.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   

15.

Key message

The Neotropical tree Parkia panurensis shows a spatial genetic structure from the seed to the adult stage that is most likely the outcome of the seed dispersal provided by primates.

Abstract

Seed dispersal and pollination determine the gene flow within plant populations. In addition, seed dispersal creates the template for subsequent stages of plant recruitment. Therefore, the question arises whether and how seed dispersal affects the spatial genetic structure (SGS) of plant populations. In this study, we used microsatellites to analyse the SGS of the Neotropical tree Parkia panurensis (Fabaceae). This plant species is a major food resource for primates and its seeds are mainly dispersed by primates. Seeds were collected during behavioural observations of a tamarin mixed-species troop in north-eastern Peru. Additionally, leaf samples of juveniles and of adults trees of this species were collected throughout the home range of the tamarin troop. A significant SGS for embryos (located within the dispersed seeds) and for non-reproductive plants are found up to a distance of 300 m. This matches the distance within which most seeds are dispersed. In the adult stage, the scale of a significant SGS is reduced to 100 m. While we cannot explain this scale reduction, our study provides the first evidence that primate seed dispersal does influence the SGS of a tropical tree species.  相似文献   

16.
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species.  相似文献   

17.
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Pará State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15 m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within (r̂p(m)=0.607) rather than among the fruits (r̂p(m)=0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28 m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species.  相似文献   

18.
Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m.  相似文献   

19.
Wang R  Compton SG  Chen XY 《Molecular ecology》2011,20(21):4421-4432
Fragmentation reduces population sizes, increases isolation between habitats and can result in restricted dispersal of pollen and seeds. Given that diploid seed dispersal contributes more to shaping fine-scale spatial genetic structure (SGS) than haploid pollen flow, we tested whether fine-scale SGS can be sensitive to fragmentation even if extensive pollen dispersal is maintained. Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a wind-pollinated and gravity seed-dispersed tree, was studied in an area of southeast China where its populations have been fragmented to varying extents by human activity. Using different age classes of trees in areas subject to varying extents of fragmentation, we found no significant difference in genetic diversity between prefragmentation vs. postfragmentation C. sclerophylla subpopulations. Genetic differentiation among postfragmentation subpopulations was also only slightly lower than among prefragmentation subpopulations. In the most fragmented habitat, selfing rates were significantly higher than zero in prefragmentation, but not postfragmentation, cohorts. These results suggest that fragmentation had not decreased gene flow among these populations and that pollen flow remains extensive. However, significantly greater fine-scale SGS was found in postfragmentation subpopulations in the most fragmented habitat, but not in less fragmented habitats. This alteration in SGS reflected more restricted seed dispersal, induced by changes in the physical environments and the prevention of secondary seed dispersal by rodents. An increase in SGS can therefore result from more restricted seed dispersal, even in the face of extensive pollen flow, making it a sensitive indicator of the negative consequences of population fragmentation.  相似文献   

20.
采用微卫星技术研究了板栗(Castanea mollissima)和锥栗(C. henryi)同域分布居群的空间遗传结构, 探讨了它们的遗传变异空间分布特征及其形成机制。结果表明,采用的7个微卫星在两物种中共扩增出173个等位基因,两物种都具有较高的遗传多样性且种间遗传分化水平较低(FST=0.051), 但空间自相关分析揭示板栗和锥栗在同域居群中具有不同的空间遗传结构,锥栗在100 m内有空间遗传结构,而板栗没有;同时,基于亲缘关系系数FijSp统计值也显示锥栗具有比板栗更强的空间遗传结构(板栗的Sp=0.002;锥栗的Sp=0.018)。居群遗传变异的空间结构是其传粉和种子散播及生境共同作用的结果,其中种子的近距离散播和居群密度可能是主要的因素。板栗和锥栗居群在小尺度上空间遗传结构的差异可能反映了它们种子的大小及扩散过程的差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号