首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
The transgenic mouse line OVE459 carries a transgene-induced insertional mutation resulting in autosomal recessive congenital hydrocephalus. Homozygous transgenic animals experience ventricular dilation with perinatal onset and are noticeably smaller than hemizygous or non-transgenic littermates within a few days after birth. Fluorescence in situ hybridization (FISH) revealed that the transgene inserted in a single locus on mouse Chromosome (chr) 8, region D2-E1. Genetic crosses between hemizygous OVE459 mice and mice heterozygous for the spontaneous mutation hydrocephalus-3 (hy3) produced hydrocephalic offspring with a frequency of 22%, demonstrating that these two mutations are allelic. A genomic library was made by using DNA from homozygous OVE459 mice, and genomic DNA flanking the transgene insertion site was isolated and sequenced. A PCR polymorphism between C57BL/6 DNA and Mus spretus was used to map the location of the transgene insert to 1.06 cM ± 0.75 proximal to D8Mit152 by using the Jackson Laboratory Backcross DNA Panel Mapping Resource. Furthermore, sequence analysis from a mouse bacterial artificial chromosome (BAC) clone, positive for unique markers on both sides of the transgene insertion site, demonstrated that the genomic DNAs flanking each side of the transgene insertion are physically separated by approximately 51 kb on the wild-type mouse chromosome.  相似文献   

3.
4.
A dominant mutation was generated in transgenic mice as a consequence of insertional mutation. Heterozygous mice from transgenic line 9257 (Tg(9257)) are hyperactive with bidirectional circling behavior and have a distinctive facial appearance due to hypoplasia of the nasal bone. Morphological analysis of the inner ear revealed asymmetric abnormalities of the horizontal canal and flattening or invagination of the crista ampullaris, which can account for the circling behavior. The sensory epithelium appeared to be normal. The transgene insertion site was localized by in situ hybridization to the B1 band of mouse chromosome 18. Genetic mapping in an interspecific backcross demonstrated the gene order centromere--Tg(9257)--8.8 +/- 3.4--Grl-1, Egr-1, Fgf-1, Apc--14.7 +/- 4.3--Pdgfr. The phenotype and the mapping data suggest that the transgene may be inserted at the Twirler locus. Homozygosity for the transgene results in prenatal lethality, but compound heterozygotes carrying the Tw allele and the transgene are viable. The function of the closely linked ataxia locus is not disrupted by the transgene insertion. This insertional mutant will provide molecular access to genes located in the Twirler region of mouse chromosome 18.  相似文献   

5.
6.
The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5′ and 3′ flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggest that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.  相似文献   

7.
The random germline integration of genetically engineered transgenes has been a powerful technique to study the role of particular genes in variety of biological processes. Although the identification of the transgene insertion site is often not essential for functional analysis of the transgene, identifying the site can have practical benefit. Enabling one to distinguish between animals that are homozygous or hemizygous for the transgene locus could facilitate breeding strategies to produce animals with a large number of genetic markers. Furthermore, founder lines generated with the same transgene construct may exhibit different phenotypes and levels of transgene expression depending on the site of integration. The goal of this report was to develop a rapid protocol for the identification and verification of transgene insertion sites. To identify host genomic sequences at the coagulation Factor X transgene integration site, DNA from a tail snip of the transgenic mouse was digested with NcoI and circularized using T4 DNA ligase. Using appropriately positioned PCR primers annealing to a transgene fragment distal to a terminal transgene restriction site (NcoI), one could amplify a fragment containing the transgene terminal region and extending into the flanking genomic sequence at the insertion site. DNA sequence determination of the amplicon permitted identification of the insertion site using a BLASTN search. FISH analysis of a metaphase spread of primary fibroblasts derived from the transgenic mouse was consistent with the identification of insertion site near the end of mouse chromosome 14. Identification of transgene insertion sites will facilitate genotyping strategies useful for the construction of mice with multiple engineered genetic markers and to distinguish among different founder lines generated by the same transgene. Furthermore, identification of the insertion site is necessary to analyze unexpected phenotypes that might be caused by insertional inactivation of an endogenous gene.  相似文献   

8.
The molecular mechanisms controlling the initiation of parturition remain largely undefined. We report a new animal model in which parturition does not occur. A line of mice expressing a human apolipoprotein B (APOB) gene fail to deliver their young if the transgene is present in homozygous (Tg/Tg), but not in heterozygous (Tg/Wt), form. Cloning and mapping of the transgene insertion locus indicate that 10 copies of the 80-kilobase APOB genomic fragment inserted into mouse chromosome 6 result in a small, 390-base pair deletion of mouse genomic DNA. Nine other lines expressing the transgene have normal labor, suggesting that transgene insertion in this mutant line disrupted a mouse gene crucial for successful parturition. The pathophysiology of parturition failure in these animals was defined using physiological, endocrinological, and morphological techniques. Results indicate that luteolysis occurs in Tg/Tg mice but is delayed by 1 day. Delivery did not occur in mutant mice at term after spontaneous luteolysis or even after removal of progesterone action by ovariectomy or antiprogestin treatment. Biomechanical and functional studies of the uterus and cervix revealed that the primary cause of failed parturition in Tg/Tg mice was not inadequate uterine contractions of labor but, rather, a rigid, inelastic cervix at term that was abnormally rich in neutrophils and tissue monocytes. Characterization of the transgene insertional mutant, Tg/Tg, indicates that progesterone withdrawal is insufficient to complete parturition in the presence of inadequate cervical ripening at term.  相似文献   

9.
Donald A. Cooksey 《Plasmid》1986,16(3):222-224
A spontaneous agrocin-resistant mutant of Agrobacterium tumefaciens strain C58 was shown to have an insertion of 1.2 kb in the agrocin-sensitivity region of pTiC58. The insertion was cloned from the Ti-plasmid, and a subclone containing only DNA internal to the insertion was used to probe the Ti-plasmid and chromosomal DNA of the wild-type strain C58. The probe showed homology to chromosomal sequences but showed no homology to wild-type pTiC58. Homology was also detected with chromosomal sequences of A. tumefaciens strains, B6, K24, and T37. These results suggest that an indigenous insertion sequence of 1.2 kb transposed from the chromosome to the agrocin-sensitivity region of the Ti-plasmid in this spontaneous mutant of C58.  相似文献   

10.
W H Mark  K Signorelli  M Blum  L Kwee  E Lacy 《Genomics》1992,13(1):159-166
In line 4 transgenic mice, six to eight copies of a 50-kb lambda recombinant clone are arranged in a head-to-tail tandem array on chromosome 3. Embryos homozygous for the transgene become arrested in their development on Day 5 of gestation shortly after implantation. The insertion site was cloned using a small segment of the transgene as a probe. Comparison of the insertion site with the wildtype locus indicates that a 22-kb deletion of host DNA has occurred in line 4 mice. Restriction enzyme analyses showed that neither the tandem array nor the flanking chromosomal DNA had any detectable rearrangements. Sequencing of the junctions between host and foreign DNA, however, revealed insertions of small fragments of DNA of unknown origin as well as an insertion of a DNA segment derived from another region of the transgene. Therefore, disruption of an essential gene in the line 4 transgenic mouse may have been caused by the insertion of 300-400 kb of foreign DNA or a deletion of sequences in the host genome.  相似文献   

11.
In the process of generating transgenic mice, inserted foreign DNA can cause insertional inactivation of the flanking genetic locus and simultaneously provide a molecular tag for localizing and cloning the inactivated gene. We describe the case of an insertional mutation leading, in animals homozygous for the insertion, to severe anaemia that was lethal within a few days after birth. The haemolytic anaemia and microspherocytosis of the red cells strongly suggested membrane abnormalities of the erythrocytes. Byin situ localization of the integration site, protein analysis of the red cell membranes, northern and Southern blot analyses, we were able to demonstrate that the integrated transgene had affected the α-spectrin gene locus.  相似文献   

12.
The characterization of the insertion sites of exogenous sequences in transgenic mice can identify loci that are potentially useful for the genetic analysis of the mammalian genome. We have found that the transgene insertion site in the transgenic line TG.EB is tightly linked with the Steel (Sl) locus on mouse chromosome 10. In a backcross between doubly heterozygous transgenic Sl (Tg.EB +/+ Sl) mice and wild-type mice, only one recombinant was found in 135 progeny (recombination percentage = 0.7 +/- 0.7). The recombination frequency of the transgene with marker loci known to flank Sl was consistent with a map position close to Sl. Genomic sequences that are adjacent to the transgene insertion site were cloned and found to be tightly linked with the Sl locus in interspecific crosses using nontransgenic mice. Recombination analysis utilizing the transgene insertion site locus was used to show that a recently identified hematopoietic growth factor is encoded at Sl. The cloned sequences from the transgene insertion site are polymorphic in inbred strains of mice and can be utilized to determine the genotype at Sl during early embryonic development. Further, they may be useful in characterizing the genomic region near Sl that is affected in Sl deletion mutants.  相似文献   

13.
The brown(Dominant) (bw(D)) allele contains a large insertion of heterochromatin leading to the trans-inactivation of the wild-type allele in bw(D)/bw(+) heterozygous flies. This silencing is correlated with the localization of bw(+) to a region of the interphase nucleus containing centric heterochromatin. We have used a series of transgene constructs inserted in the vicinity of the bw locus to demarcate both the extent of bw(D) influence along the chromosome and the relative sensitivities of various genes. Examples of regulatory regions that are highly sensitive, moderately sensitive, and insensitive were found. Additionally, by using the same transgene at increasing distances from the bw(D) insertion site in trans we were able to determine the range of influence of the heterochromatic neighborhood in terms of chromosomal distance. When the transgene was farther away from bw, there was, indeed, a tendency for it to be less trans-inactivated. However, insertion site also influenced silencing: a gene 86 kb away was trans-inactivated, while the same transgene 45 kb away was not. Thus location, distance, and gene-specific differences all influence susceptibility to trans-silencing near a heterochromatic neighborhood. These results have important implications for the ability of nuclear positioning to influence the expression of large blocks of a chromosome.  相似文献   

14.
While generating transgenic lines, transgene-linked mutations can occur, which are caused by an insertional mutation at a given locus. More rarely, mutations unlinked to the transgene insertion site are observed. In the process of generating a mouse overexpressing the enzyme tyrosinase, we have obtained one transgenic line that appears to carry a semidominant insertional mutation at the Gli3 (extra toes) locus, characterized by polydactyly and skeletal malformations. Additionally, the transgenic line contained a second mutation, Crc (circletail), which appears to be unlinked to the transgene insertion site. Heterozygous Crc mice are incompletely penetrant for a circled-tail phenotype, while all homozygous Crc/Crc mice die at birth of a severe neural tube defect (craniorachischisis). Anatomical evidence from a Crc/Crc; Gli3/+ fetus indicates that these two genes may interact.  相似文献   

15.
16.
We describe a novel transgene insertional mouse mutant with skeletal abnormalities characterized by a kinked tail and severe curvature of the spine. The disrupted locus is designated kkt for "kyphoscoliosis kinked tail." Malformed vertebrae including bilateral ossification centers and premature fusion of the vertebral body to the pedicles are observed along the vertebral column, and the lower thoracic and lumbar vertebrae are the most affected. Some of the homozygous kkt neonates displayed two backward-pointing transverse processes in the sixth lumbar vertebra (L6) that resembled the first sacral vertebra, and some displayed one forward- and one backward-pointing transverse process in L6. The fourth and fifth sternebrae were also fused, and the acromion process of the scapula was missing in kkt mice. The skeletal abnormalities are similar to those observed in the mouse mutant undulated (un). The transgene is integrated at the distal end of chromosome 2 close to the Pax1 gene, as revealed by FISH analysis. However, mutation of the Pax1 gene is responsible for the un phenotype, but the Pax1 gene in the kkt mice is not rearranged or deleted. Pax1 is expressed normally in kkt embryos and in the thymus of mature animals, and there is no mutation in its coding sequence. Thus, the skeletal abnormalities observed in the kkt mutant are not due to a lack of functional Pax1. Mouse genomic sequences flanking the transgene and PAC clones spanning the wild-type kkt locus have been isolated, and reverse Northern analysis showed that the PACs contain transcribed sequence. Compound heterozygotes between un and kkt (un(+/-)/kkt(+/-)) display skeletal abnormalities similar to those of un or kkt homozygotes, but they have multiple lumbar vertebrae with a split vertebral body that is more severe than in homozygous un or kkt neonates. Furthermore, the sternebrae are not fused and no backward-pointing transverse processes are detected in L6. It is therefore apparent that these two mutations do not fully complement each other, and we propose that a gene in the kkt locus possesses a unique role that functions in concert with Pax1 during skeletal development.  相似文献   

17.
18.
We have previously identified a line of transgenic mice, Tg4, in which an hsp68-lacZ hybrid gene has inserted into the dystonia musculorum (dt) locus on chromosome 1. We have confirmed the localization of the Tg4 integration site to the proximal region of mouse chromosome 1 by interspecific backcross analysis. One end of the integration complex has been cloned and we have used single-copy probes from the flanking region to screen a mouse genomic library. Several overlapping lambda phage clones have been isolated and arranged into a contig spanning 75 kb of genomic DNA. Probes from the genomic contig have enabled us to characterize the wildtype and Tg4 loci. We report that the integration of the transgene was accompanied by a deletion of 45 kb of host genomic sequences with no other detectable rearrangement in the Tg4 genome.  相似文献   

19.
20.
Spermiogenesis is a complex process that is regulated by a plethora of genes and interactions between germ and somatic cells. Here we report a novel mutant mouse strain that carries a transgene insertional/translocational mutation and exhibits dominant male sterility. We named the mutation dominant spermiogenesis defect (Dspd). In the testes of Dspd mutant mice, spermatids detached from the seminiferous epithelium at different steps of the differentiation process before the completion of spermiogenesis. Microinsemination using spermatids collected from the mutant testes resulted in the birth of normal offspring. These observations indicate that the major cause of Dspd infertility is (are) a defect(s) in the Sertoli cell-spermatid interaction or communication in the seminiferous tubules. Fluorescent in situ hybridization (FISH) analysis revealed a translocation between chromosomes 7F and 14C at the transgene insertion site. The deletion of a genomic region of chromosome 7F greater than 1 megabase and containing at least six genes (Cttn, Fadd, Fgf3, Fgf4, Fgf15, and Ccnd1) was associated with the translocation. Cttn encodes the actin-binding protein cortactin. Immunohistochemical analysis revealed localization of cortactin beside elongated spermatids in wild-type testes; abnormality of cortactin localization was found in mutant testes. These data suggest an important role of cortactin in Sertoli cell-spermatid interactions and in the Dspd phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号