共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerald R. Smith Franklin W. Stahl 《BioEssays : news and reviews in molecular, cellular and developmental biology》1985,2(6):244-249
Chi sites are examples of special sites enhancing homologous recombination in their region of the chromosome. Chi, 5′ G-C-T-G-G-T-G-G3′, is a recognition site for the RecBC enzyme, which nicks DNA near Chi as it unwinds DNA. A molecular model of genetic recombination incorporating these features is reviewed. 相似文献
2.
3.
Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site 总被引:1,自引:0,他引:1
Sophie Sourice Véronique Biaudet Meriem El Karoui S. Dusko Ehrlich & Alexandra Gruss 《Molecular microbiology》1998,27(5):1021-1029
The Escherichia coli Chi site 5'-GCTGGTGG-3' modulates the activity of the powerful dsDNA exonuclease and helicase RecBCD. Genome sequence analyses revealed that Chi is frequent on the chromosome and oriented with respect to replication on the E . coli genome. Chi is also present much more frequently than predicted statistically for a random 8-mer sequence. Although it is assumed that Chi is ubiquitous, there is virtually no proof that its features are conserved in other microorganisms. We therefore identified and analysed the Chi sequence of an organism for which the full genome sequence was available, Haemophilus influenzae . The biological test we used is based on our finding that rolling circle plasmids provide a specific substrate for RecBCD analogues in different microorganisms. Unexpectedly, several related sequences, corresponding to 5'-GNTGGTGG-3' and 5'-G(G/C)TGGAGG-3', showed Chi activity. As in E . coli , the H . influenzae Chi sites are frequent on the genome, which is in keeping with the need for frequent Chi sites for dsDNA break repair of chromosomal DNA. Although statistically over-represented, this feature is less marked than that of the E . coli Chi site. In contrast to E . coli , the H . influenzae Chi motifs are only slightly oriented with respect to the replication strand. Thus, although Chi appears to have a highly conserved biological role in attenuating exonuclease activity, its sequence characteristics and statistical representation on the genome may differ according to the particular features of the host. 相似文献
4.
We calculated correlations of the nucleotide distributions along the E. coli genome. Subsequent cluster analysis of the correlation distributions showed that the genome was composed of two qualitatively different types of nucleotide sequences. The first type exhibited strong correlations of the genomic distributions of A with T and G with C, and high anticorrelations of A with C and G with T. In contrast, the second type was characterized by weak or negligible correlations typical of randomized sequences. Both types of sequences were almost equally abundant in the E. coli genome and their length varied from several hundred nucleotides to about 70 kilobases. They were not disjunct with respect to their (G + C) content but the high correlations and anticorrelations were rather characteristic for (A + T)-rich genomic segments. We offer possible explanations of the mosaic structure of the E. coli genome. 相似文献
5.
Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination
下载免费PDF全文

The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination. 相似文献
6.
7.
8.
To measure cisplatin (cis-diaminodichloroplatinum(II))-induced recombination, we have used a qualitative intrachromosomal assay utilizing duplicate inactive lac operons containing non-overlapping deletions and selection for Lac+ recombinants. The two operons are separated by one Mb and conversion of one of them yields the Lac+ phenotype. Lac+ formation for both spontaneous and cisplatin-induced recombination requires the products of the recA, recBC, ruvA, ruvB, ruvC, priA and polA genes. Inactivation of the recF, recO, recR and recJ genes decreased cisplatin-induced, but not spontaneous, recombination. The dependence on PriA and RecBC suggests that recombination is induced following stalling or collapse of replication forks at DNA lesions to form double strand breaks. The lack of recombination induction by trans-DDP suggests that the recombinogenic lesions for cisplatin are purine-purine intrastrand crosslinks. 相似文献
9.
Homologous recombination in Escherichia coli is enhanced by a cis-acting octamer sequence named Chi (5''-GCTGGTGG-3'') that interacts with RecBCD. To gain insight into the mechanism of Chi-enhanced recombination, we recruited an experimental system that permits physical monitoring of intramolecular recombination by linear substrates released by in vivo restriction from infecting chimera phage. Recombination of the released substrates depended on recA, recBCD and cis-acting Chi octamers. Recombination proficiency was lowered by a xonA mutation and by mutations that inactivated the RuvABC and RecG resolution enzymes. Activity of Chi sites was influenced by their locations and by the number of Chi octamers at each site. A single Chi site stimulated recombination, but a combination of Chi sites on the two homologs was synergistic. These data suggest a role for Chi at both ends of the linear substrate. Chi was lost in all recombinational exchanges stimulated by a single Chi site. Exchanges in substrates with Chi sites on both homologs occurred in the interval between the sites as well as in the flanking interval. These observations suggest that the generation of circular products by intramolecular recombination involves Chi-dependent processing of one end by RecBCD and pairing of the processed end with its duplex homolog. 相似文献
10.
Deletions of the 3' flanking DNA region of the glutamate dehydrogenase (GDH) structural gene from Escherichia coli K-12, have been produced on a plasmid that carries the complete gdhA gene. Those deletions include part of the repetitive extragenic palindromic (REP) sequences proposed by Stern et al. [Cell 37 (1984) 1015-1026], as a novel and major feature of the bacterial genome. The effect of these deletions on the final GDH level in the cell, has been determined. A broader compilation, analysis and alternative functions of the REP sequences, is also presented. 相似文献
11.
12.
Role for radA/sms in recombination intermediate processing in Escherichia coli 总被引:3,自引:0,他引:3
下载免费PDF全文

RadA/Sms is a highly conserved eubacterial protein that shares sequence similarity with both RecA strand transferase and Lon protease. We examined mutations in the radA/sms gene of Escherichia coli for effects on conjugational recombination and sensitivity to DNA-damaging agents, including UV irradiation, methyl methanesulfonate (MMS), mitomycin C, phleomycin, hydrogen peroxide, and hydroxyurea (HU). Null mutants of radA were modestly sensitive to the DNA-methylating agent MMS and to the DNA strand breakage agent phleomycin, with conjugational recombination decreased two- to threefold. We combined a radA mutation with other mutations in recombination genes, including recA, recB, recG, recJ, recQ, ruvA, and ruvC. A radA mutation was strongly synergistic with the recG Holliday junction helicase mutation, producing profound sensitivity to all DNA-damaging agents tested. Lesser synergy was noted between a mutation in radA and recJ, recQ, ruvA, ruvC, and recA for sensitivity to various genotoxins. For survival after peroxide and HU exposure, a radA mutation surprisingly suppressed the sensitivity of recA and recB mutants, suggesting that RadA may convert some forms of damage into lethal intermediates in the absence of these functions. Loss of radA enhanced the conjugational recombination deficiency conferred by mutations in Holliday junction-processing function genes, recG, ruvA, and ruvC. A radA recG ruv triple mutant had severe recombinational defects, to the low level exhibited by recA mutants. These results establish a role for RadA/Sms in recombination and recombinational repair, most likely involving the stabilization or processing of branched DNA molecules or blocked replication forks because of its genetic redundancy with RecG and RuvABC. 相似文献
13.
Middendorf B Hochhut B Leipold K Dobrindt U Blum-Oehler G Hacker J 《Journal of bacteriology》2004,186(10):3086-3096
The uropathogenic Escherichia coli strain 536 carries at least five genetic elements on its chromosome that meet all criteria characteristic of pathogenicity islands (PAIs). One main feature of these distinct DNA regions is their instability. We applied the so-called island-probing approach and individually labeled all five PAIs of E. coli 536 with the counterselectable marker sacB to evaluate the frequency of PAI-negative colonies under the influence of different environmental conditions. Furthermore, we investigated the boundaries of these PAIs. According to our experiments, PAI II536 and PAI III536 were the most unstable islands followed by PAI I536 and PAI V536, whereas PAI IV536 was stable. In addition, we found that deletion of PAI II536 and PAI III536 was induced by several environmental stimuli. Whereas excision of PAI I536, PAI II536, and PAI V536 was based on site-specific recombination between short direct repeat sequences at their boundaries, PAI III536 was deleted either by site-specific recombination or by homologous recombination between two IS100-specific sequences. In all cases, deletion is thought to lead to the formation of nonreplicative circular intermediates. Such extrachromosomal derivatives of PAI II536 and PAI III536 were detected by a specific PCR assay. Our data indicate that the genome content of uropathogenic E. coli can be modulated by deletion of PAIs. 相似文献
14.
S C Kowalczykowski D A Dixon A K Eggleston S D Lauder W M Rehrauer 《Microbiological reviews》1994,58(3):401-465
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. 相似文献
15.
16.
DNA cloning by homologous recombination in Escherichia coli 总被引:18,自引:0,他引:18
The cloning of foreign DNA in Escherichia coli episomes is a cornerstone of molecular biology. The pioneering work in the early 1970s, using DNA ligases to paste DNA into episomal vectors, is still the most widely used approach. Here we describe a different principle, using ET recombination, for directed cloning and subcloning, which offers a variety of advantages. Most prominently, a chosen DNA region can be cloned from a complex mixture without prior isolation. Hence cloning by ET recombination resembles PCR in that both involve the amplification of a DNA region between two chosen points. We apply the strategy to subclone chosen DNA regions from several target molecules resident in E. coli hosts, and to clone chosen DNA regions from genomic DNA preparations. Here we analyze basic aspects of the approach and present several examples that illustrate its simplicity, flexibility, and remarkable efficiency. 相似文献
17.
18.
Uropathogenic Escherichia coli (UPEC) strains are responsible for the majority of uncomplicated urinary tract infections, which can present clinically as cystitis or pyelonephritis. UPEC strain CFT073, isolated from the blood of a patient with acute pyelonephritis, was most cytotoxic and most virulent in mice among our strain collection. Based on the genome sequence of CFT073, microarrays were utilized in comparative genomic hybridization (CGH) analysis of a panel of uropathogenic and fecal/commensal E. coli isolates. Genomic DNA from seven UPEC (three pyelonephritis and four cystitis) isolates and three fecal/commensal strains, including K-12 MG1655, was hybridized to the CFT073 microarray. The CFT073 genome contains 5,379 genes; CGH analysis revealed that 2,820 (52.4%) of these genes were common to all 11 E. coli strains, yet only 173 UPEC-specific genes were found by CGH to be present in all UPEC strains but in none of the fecal/commensal strains. When the sequences of three additional sequenced UPEC strains (UTI89, 536, and F11) and a commensal strain (HS) were added to the analysis, 131 genes present in all UPEC strains but in no fecal/commensal strains were identified. Seven previously unrecognized genomic islands (>30 kb) were delineated by CGH in addition to the three known pathogenicity islands. These genomic islands comprise 672 kb of the 5,231-kb (12.8%) genome, demonstrating the importance of horizontal transfer for UPEC and the mosaic structure of the genome. UPEC strains contain a greater number of iron acquisition systems than do fecal/commensal strains, which is reflective of the adaptation to the iron-limiting urinary tract environment. Each strain displayed distinct differences in the number and type of known virulence factors. The large number of hypothetical genes in the CFT073 genome, especially those shown to be UPEC specific, strongly suggests that many urovirulence factors remain uncharacterized. 相似文献
19.
Our previous data showed that the principal pathway of the formation of selected recombinants in Escherichia coli strains carrying heterozygous tandem duplications is unequal crossing over between sister chromosomes. Data presented in this work showed that when DNA homology is not disturbed (due to transposon insertion), intragenic recombinants can occur directly in the region of recombination through intrachromomal exchange as well. 相似文献