首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

2.
3.
The T cell antigen receptor (TCR) is an oligomeric protein complex made from at least six different integral membrane proteins (alpha beta gamma delta epsilon and zeta). The TCR is assembled in the ER of T cells, and correct assembly is required for transport to the cell surface. Single subunits and partial receptor complexes are retained in the ER where TCR alpha, beta, and CD3 delta chains are degraded selectively. The information required for the ER degradation of the TCR beta chain is confined to the membrane anchor of the protein (Wileman et al., 1990c; Bonifacino et al., 1990b). In this study we show that the rapid degradation of the TCR beta chain is inhibited when it assembles with single CD3 gamma, delta, or epsilon subunits in the ER, and have started to define the role played by transmembrane anchors, and receptor ectodomains, in the masking proteolytic targeting information. Acidic residues within the membrane spanning domains of CD3 subunits were essential for binding to the TCR beta chain. TCR beta chains and CD3 subunits therefore interact via transmembrane domains. However, when sites of binding were restricted to the membrane anchor of the TCR beta chain, stabilization by CD3 subunits was markedly reduced. Interactions between membrane spanning domains were not, therefore, sufficient for the protection of the beta chain from ER proteolysis. The presence of the C beta domain, containing the first 150 amino acids of the TCR ectodomain, greatly increased the stability of complexes formed in the ER. For assembly with CD3 epsilon, stability was further enhanced by the V beta amino acids. The results showed that the efficient neutralization of transmembrane proteolytic targeting information required associations between membrane spanning domains and the presence of receptor ectodomains. Interactions between receptor ectodomains may slow the dissociation of CD3 subunits from the beta chain and prolong the masking of transmembrane targeting information. In addition, the close proximity of TCR and CD3 ectodomains within the ER may provide steric protection from the action of proteases within the ER lumen.  相似文献   

4.
5.
The T cell receptor (TCR) is a molecular complex formed by at least seven transmembrane proteins: the antigen/major histocompatibility complex recognition unit (Ti alpha-beta heterodimer) and the invariant CD3 chains (gamma, delta, epsilon, zeta, and eta). In addition to targeting partially assembled Ti alpha-beta CD3 gamma delta epsilon TCR complexes to the cell surface, CD3 zeta appears to be essential for interleukin-2 production after TCR stimulation with antigen/major histocompatibility complex. The gamma chain of the high affinity Fc receptor for IgE (Fc epsilon RI gamma) has significant structural homology to CD3 zeta and the related CD3 eta subunit. To identify the functional significance of sequence homologies between CD3 zeta and Fc epsilon RI gamma in T cells, we have transfected a Fc epsilon RI gamma cDNA into a T cell hybridoma lacking CD3 zeta and CD3 eta proteins. Herein we show that a Fc epsilon RI gamma-gamma homodimer associates with TCR components to up-regulate TCR surface expression. A TCR composed of Ti alpha-beta CD3 gamma delta epsilon Fc epsilon RI gamma-gamma is sufficient to restore the coupling of TCR antigen recognition to the interleukin-2 induction pathway, demonstrating the functional significance of structural homology between the above receptor subunits. These results, in conjunction with the recent finding that CD3 zeta, CD3 eta, and Fc epsilon RI gamma are coexpressed in certain T cells as subunits of an unusual TCR isoform, suggest that Fc epsilon RI gamma is likely to play a role in T cell lineage function.  相似文献   

6.
The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex is produced in the endoplasmic reticulum in the absence of CD3-gamma; 2) CD3-zeta does not associate with the Ti alpha beta-CD3 delta epsilon complex; 3) the Ti alpha beta-CD3 delta epsilon complex is not exported from the endoplasmic reticulum to the Golgi apparatus; and 4) CD3-gamma is required for cell surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.  相似文献   

7.
The T cell receptor for antigen (TCR) is composed of six different transmembrane proteins. T cells carefully control the intracellular transport of the receptor and allow only complete receptors to reach the plasma membrane. In an attempt to understand how T cells regulate this process, we used c-DNA transfection and subunit-specific antibodies to follow the intracellular transport of five subunits (alpha beta gamma delta epsilon) of the receptor. In particular, we assessed the intracellular stability of each chain. Our results showed that the chains were markedly different in their susceptibility to intracellular degradation. TCR alpha and beta and CD3 delta were degraded rapidly, whereas CD3 gamma and epsilon were stable. An analysis of the N-linked oligosaccharides of the glycoprotein subunits suggested that the chains were unable to reach the medial Golgi during the metabolic chase. This was supported by immunofluorescence micrographs that showed both the stable CD3 gamma and unstable CD3 delta chain localized in the endoplasmic reticulum. To study the effects of subunit associations on intracellular transport we used cotransfection to reconstitute precise combinations of subunits. Associations between stable and unstable subunits expressed in the same cell led to the formation of stable complexes. These complexes were retained in or close to the endoplasmic reticulum. The results suggested that the intracellular transport of the T cell receptor could be regulated by two mechanisms. The TCR alpha and beta and CD3 delta subunits were degraded rapidly and as a consequence failed to reach the plasma membrane. CD3 gamma or epsilon were stable but were retained inside the cell. The results also demonstrated that there was an interplay between the two pathways such that the CD3 gamma and epsilon subunits were able to protect labile chains from rapid intracellular degradation. In this way, they could seed subunit assembly in or close to the endoplasmic reticulum and allow a stable receptor to form before its transport to the plasma membrane.  相似文献   

8.
The T cell receptor (TCR) for antigen consists, on the majority of peripheral lymphocytes, of an immunoglobulin-like, disulfide-linked heterodimeric glycoprotein: the alpha and beta chain. These proteins are noncovalently linked to at least four nonvariant proteins which comprise the CD3 complex: CD3 gamma, delta, epsilon, and zeta. Whereas the TCR alpha and beta proteins have positively charged residues in the transmembrane region, all the CD3 proteins have similarly placed negatively charged amino acid residues. It has been suggested that these basic and acidic amino acid residues may play an important role in TCR.CD3 complex assembly and/or function. In this paper, the structural and functional role of the lysine and arginine residues of the TCR alpha chain was addressed using oligonucleotide mediated site directed mutagenesis. The Arg256 and Lys261 residues of the TCR alpha cDNA of the HPB-ALL cell line were mutated to either Gly256 and/or Ile261. The altered cDNAs were transfected into a TCR alpha negative recipient mutant cell line of REX, clone 20A. Metabolic labeling of the T cell transfectants showed that mutation of either the Arg256 or Lys261 amino acid residues had no effect on the ability of the TCR alpha chain to form either a heterodimer with the TCR beta chain or a complex with the CD3 gamma, delta, and epsilon proteins. Consequently, the Arg256 to Gly256 and Lys261 to Ile261 mutations did not prevent the formation of a mature, functional TCR.CD3 complex on the cell surface as determined by immunofluorescence, cell surface radioiodination, and the ability of the transfectants to mobilize intracellular calcium after stimulation with a mitogenic anti-CD3 epsilon monoclonal antibody. In contrast, a mutant cDNA in which both the Arg256 and Lys261 residues were mutated to Gly256 and Ile261, respectively, failed to reconstitute the cell surface expression of the TCR.CD3 complex and, consequently, the ability to respond to mitogenic stimuli. In the absence of both the Arg256 and Lys261 residues, TCR alpha beta heterodimer formation was not observed. Cotransfection studies in COS cells showed that the failure of assembly of a heterodimer was likely due to an inability of the mutated TCR alpha chain to form a subcomplex with either the CD3 gamma, delta, epsilon, or zeta proteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Most T lymphocytes express on their surfaces a multisubunit receptor complex, the T cell antigen receptor (TCR) containing alpha, beta, gamma, delta, epsilon, and zeta molecules, that has been widely studied as a model system for protein quality control. Although the parameters of TCR assembly are relatively well established, little information exists regarding the stage(s) of TCR oligomerization where folding of TCR proteins is completed. Here we evaluated the modification of TCR glycoproteins by the endoplasmic reticulum folding sensor enzyme UDP-glucose:glycoprotein glucosyltransferase (GT) as a unique and sensitive indicator of how TCR subunits assembled into multisubunit complexes are perceived by the endoplasmic reticulum quality control system. These results demonstrate that all TCR subunits containing N-glycans were modified by GT and that TCR proteins were differentially reglucosylated during their assembly with partner TCR chains. Importantly, these data show that GT modification of most TCR subunits persisted until assembly of CD3alpha beta chains and formation of CD3-associated, disulfide-linked alpha beta heterodimers. These studies provide a novel evaluation of the folding status of TCR glycoproteins during their assembly into multisubunit complexes and are consistent with the concept that TCR folding is finalized convergent with formation of alpha beta delta epsilon gamma epsilon complexes.  相似文献   

10.
We recognized a common dimerization motif between the transmembrane (TM) domain of zeta-chain family members and glycophorin A. We have shown that a glycine within the zeta-dimerization motif is critical for zeta-homodimerization and also for its association with the TCR/CD3 complex. Similarly, two residues within the CD3 delta gamma TM domains have proven to be critical for their interaction with the zeta-homodimer. A three-dimensional homology model of the zeta-chain TM domain highlights potential residues preferentially involved either in the zeta 2-CD3 or zeta 2-TCR alpha beta association, confirming our experimental findings. These results indicate that, for symmetrical reasons, the zeta-homodimer participates in the TCR/CD3 complex assembly by interacting with CD3 gamma delta TM domains, thereby masking their degradation signals located in the cytoplasmic tails.  相似文献   

11.
Most subunits of the alphabeta deltaepsilon gammaepsilon zetazeta T cell antigen receptor (TCR) complex associate with the molecular chaperone calnexin shortly after their synthesis in the endoplasmic reticulum, including clonotypic TCRalpha,beta molecules and invariant CD3gamma,delta,epsilon chains. While calnexin interaction is suggested to be important for the stability of newly synthesized TCRalpha subunits, the role of calnexin in the survival and assembly of remaining TCR components is unknown. Here we evaluated the expression of TCR proteins in CEM T cells and the calnexin-deficient CEM variant CEM.NK(R). We found that CEM and CEM.NK(R) cells constitutively synthesized all TCR subunits except for TCRalpha and that CD3gamma,delta,epsilon components and CD3-beta complexes were effectively assembled together in both cell types. The stability and folding of core CD3epsilon chains were similar in CEM and CEM.NK(R) cells. Interestingly, TCRalpha synthesis was differentially induced by phorbol myristate acetate treatment in CEM and CEM.NK(R) cells and TCRalpha proteins synthesized in CEM.NK(R) cells showed reduced survival compared to those made in CEM cells. Importantly, these data show that TCR complexes were inducibly expressed on CEM.NK(R) cells in the absence of calnexin synthesis. These results demonstrate that TCR complexes can be expressed in the absence of calnexin and suggest that the role of calnexin in the quality control of TCR assembly is primarily restricted to the stabilization of newly synthesized TCRalpha proteins.  相似文献   

12.
Several molecules belonging to the Ig superfamily are expressed together with noncovalently associated subunits. This applies for membrane-bound IgM and IgD, some of the FcR, and the Ti dimers of the TCR. The interactions between members of the Ig superfamily and their associated subunits are still not fully understood. We locate critical amino acid residues for TCR assembly in the Ti-alpha and -beta extracellular C-domains. A point mutation (phenylalanine195----valine) in a highly conserved residue in the Ti-alpha chain of the Jurkat variant J79 was identified by DNA sequencing. This mutation did not prevent cytoplasmic association of Ti alpha beta and CD3 gamma delta epsilon, but abolished binding of the zeta 2 homodimer to the rest of the TCR. The consequences of this mutation for TCR assembly were confirmed by transfection of a site-directed mutagenized Ti-alpha chain into a Ti-alpha-deficient Jurkat variant. Computer model analysis showed that the Ti-alpha phenylalanine195 directly contributed to the beta-sheet facing away from the Ti-beta chain, indicating that it could be directly involved in the interactions between one or more of the CD3 chains or the zeta 2 dimer. Site-directed mutagenesis of the corresponding residue in the Ti-beta chain demonstrated that a phenylalanine216----valine substitution had similar effects on TCR assembly as the Ti-alpha mutation, whereas a phenylalanine216----histidine substitution allowed TCR assembly and expression. Whether the consequences for TCR assembly of the Ti-alpha and -beta mutations were due to any direct effects on the interaction between zeta and the Ti alpha beta dimer or to indirect effects are discussed.  相似文献   

13.
B A Irving  A Weiss 《Cell》1991,64(5):891-901
The function of the T cell antigen receptor (TCR) invariant chains, CD3 gamma, delta, epsilon, and zeta, is poorly understood. Evidence suggests that CD3 couples receptor ligand binding to intracellular signaling events. To examine the role of the CD3 zeta chain in TCR-mediated signal transduction, a chimeric protein linking the extracellular and transmembrane domains of CD8 to the cytoplasmic domain of the zeta chain was constructed. The CD8/zeta chimera is expressed independently of the TCR and is capable of transducing signals that, by criteria of early and late activation, are indistinguishable from those generated by the intact TCR. These data indicate that CD8/zeta can activate the appropriate signal transduction pathways in the absence of CD3 gamma, delta, and epsilon, and suggest that the role of CD3 zeta is to couple the TCR to intracellular signal transduction mechanisms.  相似文献   

14.
At least four different CD3 polypeptide chains are contained within the mature TCR complex, each encompassing one (CD3gamma, CD3delta, and CD3epsilon) or three (CD3zeta) immunoreceptor tyrosine-based activation motifs (ITAMs) within their cytoplasmic domains. Why so many ITAMs are required is unresolved: it has been speculated that the different ITAMs function in signal specification, but they may also serve in signal amplification. Because the CD3zeta chains do not contribute unique signaling functions to the TCR, and because the ITAMs of the CD3-gammadeltaepsilon module alone can endow the TCR with normal signaling capacity, it thus becomes important to examine how the CD3gamma-, delta-, and epsilon-ITAMs regulate TCR signaling. We here report on the role of the CD3gamma chain and the CD3gamma-ITAM in peripheral T cell activation and differentiation to effector function. All T cell responses were reduced or abrogated in T cells derived from CD3gamma null-mutant mice, probably because of decreased expression levels of the mature TCR complex lacking CD3gamma. Consistent with this explanation, T cell responses proceed undisturbed in the absence of a functional CD3gamma-ITAM. Loss of integrity of the CD3gamma-ITAM only slightly impaired the regulation of expression of activation markers, suggesting a quantitative contribution of the CD3gamma-ITAM in this process. Nevertheless, the induction of an in vivo T cell response in influenza A virus-infected CD3gamma-ITAM-deficient mice proceeds normally. Therefore, if ITAMs can function in signal specification, it is likely that either the CD3delta and/or the CD3epsilon chains endow the TCR with qualitatively unique signaling functions.  相似文献   

15.
The TCR for Ag, on the majority of human T cells, is a disulfide-linked heterodimer composed of TCR-alpha and -beta chains noncovalently associated with the monomorphic CD3 complex composed of the CD3-gamma, -delta, -epsilon, and -zeta chains. The interactions involved in the assembly of the various components of this multimeric protein complex are not fully understood. In this report, a variant of the human leukemic T cell line Jurkat that synthesized all of the known components of the TCR/CD3 complex but fails to express the TCR/CD3 complex at the cell surface is further characterized. This variant, J79, has a mutated TCR-alpha chain that does not affect the assembly of the pentameric form (TCR-alpha beta-CD3-gamma delta epsilon) of the TCR/CD3 complex but inhibits the assembly of the CD3-zeta homodimer with the rest of the complex (TCR-alpha beta-CD3-gamma delta epsilon----TCR-alpha beta-CD3-gamma delta epsilon zeta 2). Transfecting a wild-type TCR-alpha gene into J79 reconstituted expression of a complete functionally competent TCR/CD3 complex at the cell surface. The results indicate that the TCR-alpha chain plays a crucial role in the assembly of the CD3-zeta homodimer with the pentameric form of the TCR/CD3 complex.  相似文献   

16.
The T cell antigen receptor (TCR) consists of an alphabeta heterodimer and associated invariant CD3gamma, delta, epsilon, and zeta chains (TCR/CD3 complex). The general stoichiometry of the receptor complex, which is believed to be one molecule each of TCRalpha, TCRbeta, CD3gamma, and CD3delta and two molecules each of CD3epsilon and CD3zeta, is not clearly understood. Although it has been shown that there are two chains of CD3epsilon and CD3zeta, the stoichiometry of CD3gamma or CD3delta chains in the surface antigen receptor complex has not been determined. In the present study, transgenic mice expressing an altered form of mouse CD3delta and CD3gamma were employed to show that the surface TCR complexes contain one molecule each of CD3delta and CD3gamma. Thymocytes from wild type and CD3 chain transgenic mice on the appropriate knockout background were surface-biotinylated and immunoprecipitated using a specific antibody. The immunoprecipitates were resolved in two dimensions under nonreducing/reducing conditions to determine the stoichiometry of CD3delta and CD3gamma in the surface antigen receptor complex. Our data clearly show the presence of one molecule each of CD3delta and CD3gamma in the surface TCR/CD3 complex.  相似文献   

17.
Two distinct CD3 homologue cDNAs, CD3-1 and CD3-2, were isolated from a Japanese flounder leukocyte cDNA library. CD3-1 consisted of 961 bp encoding 178 amino acid residues, and CD3-2 consisted of 927 bp encoding 182 amino acid residues. The two deduced amino acid sequences had an identity of 95.1%, and neither had N-linked glycosylation sites. The identities between the Japanese flounder CD3s and previously reported CD3s (CD3 epsilon, CD3 gamma, or CD3 delta) of Xenopus laevis, chicken, and various mammals were approximately 25%. The Japanese flounder CD3s had an extracellular domain, a CXXCXE motif, and an immunoreceptor tyrosine-based activation motif (ITAM), each of which are important characteristics of CD3 chains. Furthermore, the positions of four cysteine residues in the extracellular domain were preserved in both of the Japanese flounder CD3s. A phylogenetic tree based on the amino acid sequences confirmed that the Japanese flounder CD3s are closer to CD3 epsilon than to CD3 gamma and CD3 delta. However, the gene structure of Japanese flounder CD3 is identical to the chicken and Xenopus CD3 gamma/delta genes and the mammalian CD3 delta gene. Southern blot hybridization and the DNA sequence of the CD3 gene of homocloned Japanese flounder indicated that the CD3 gene exists as a single copy. Southern blot hybridization also showed the presence of a polymorphic variant of Japanese flounder CD3. An RT-PCR analysis detected Japanese flounder CD3 mRNA in several organs that contained lymphocytes. The proportion of CD3-positive cells in the peripheral blood leukocytes was 34.9%.  相似文献   

18.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

19.
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development.  相似文献   

20.
TCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions. Genetic introduction of TCRalphabeta:zeta does not compromise surface expression and functions of an endogenous TCRalphabeta. Flow cytometry fluorescence resonance energy transfer and biochemical analyses demonstrate that TCRalphabeta:CD3zeta is the first strategy that results in highly preferred pairing between CD3zeta-modified TCRalpha and beta chains as well as absence of TCR mispairing between TCR:CD3zeta and nonmodified TCR chains. Intracellular assembly and surface expression of TCR:CD3zeta chains is independent of endogenous CD3gamma, delta, and epsilon. Taken together, our data support the use of TCRalphabeta:CD3zeta to prevent TCR mispairing, which may provide an adequate strategy to enhance efficacy and safety of TCR gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号