首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bees were trained to discriminate between a pattern with two or more black bars and a similar pattern with the bars at right angles. Earlier measures of the resolution of oblique black and white regular gratings of different periods were confirmed. The positions of the training bars were shifted every 5 min to prevent the bees from using their locations as cues. To measure the length of the detectors of edge orientation, the trained bees were tested with targets filled with parallel short black/white edges of various lengths. The minimum individual length of edge required to discriminate the orientation cue was found to be near 3 degrees, and similar for vertical, horizontal and oblique edges. This is the first time that this kind of resolution has been measured in an invertebrate. The bees learn and recognize the edge orientation, not the lay-out of the pattern.  相似文献   

2.
This study investigates the honeybee's ability to learn routes based on visual stimuli presented to a single eye, and to then navigate these routes using the other (naive) eye. Bees were trained to walk through a narrow tunnel carrying visual stimuli on the two walls. At the end of the tunnel the bees had to choose between two arms, one of which led to a feeder. In a first experiment, bees had to learn to choose the left arm to get a reward when the right wall carried a yellow grating, but the right arm when the left wall carried a blue grating. The bees learned this task well, indicating that stimuli encountered by different eyes could be associated with different routes. In a second experiment, bees had to turn left when the right eye saw a blue grating, but to the right when the same eye saw a yellow grating. They also learned this task well. In subsequent tests, they chose the correct arm even when these gratings were presented to the untrained eye. These results suggest that there is interocular transfer of route-specific learning with respect to visual stimuli that function as navigational “signposts”. Accepted: 18 December 1997  相似文献   

3.
By working with very simple images, a number of different visual cues used by the honeybee have been described over the past decades. In most of the work, the bees had no control over the choice of the images, and it was not clear whether they learned the rewarded pattern or the difference between two images. Preferences were known to exist when untrained bees selected one pattern from a variety of them, but because the preferences of the bees were ignored, it was not possible to understand how natural images displaying several cues were detected. The preferences were also essential to make a computer model of the visual system. Therefore experiments were devised to show the order of preference for the known cues in the training situation. Freely flying bees were trained to discriminate between a rewarded target with one pattern on the left side and a different one on the right, versus a white or neutral target. This arrangement gave the bees a choice of what to learn. Tests showed that in some cases they learned two or three cues simultaneously; in other cases the bees learned one, or they preferred to avoid the unrewarded target. By testing with different combinations of patterns, it was possible to put the cues into an order of preference. Of the known cues, loosely or tightly attached to eye coordinates, a black or blue spot was the most preferred, followed by strong modulation caused by edges, the orientation of parallel bars, six equally spaced spokes, a clean white target, and then a square cross and a ring. A patch of blue colour was preferred to yellow.  相似文献   

4.
A century ago, in his study of colour vision in the honeybee (Apis mellifera), Karl von Frisch showed that bees distinguish between a disc that is half yellow, half blue, and a mirror image of the same. Although his inference of colour vision in this example has been accepted, some discrepancies have prompted a new investigation of the detection of polarity in coloured patterns. In new experiments, bees restricted to their blue and green receptors by exclusion of ultraviolet could learn patterns of this type if they displayed a difference in green contrast between the two colours. Patterns with no green contrast required an additional vertical black line as a landmark. Tests of the trained bees revealed that they had learned two inputs; a measure and the retinotopic position of blue with large field tonic detectors, and the measure and position of a vertical edge or line with small-field phasic green detectors. The angle between these two was measured. This simple combination was detected wherever it occurred in many patterns, fitting the definition of an algorithm, which is defined as a method of processing data. As long as they excited blue receptors, colours could be any colour to human eyes, even white. The blue area cue could be separated from the green receptor modulation by as much as 50°. When some blue content was not available, the bees learned two measures of the modulation of the green receptors at widely separated vertical edges, and the angle between them. There was no evidence that the bees reconstructed the lay-out of the pattern or detected a tonic input to the green receptors.  相似文献   

5.
We performed the following experiment to investigate whether contextual cues can prevent interference during the acquisition of potentially competing visuomotor associations. In the bumble-bee (Bombus terrestris). Bees discriminated between horizontally and vertically orientated gratings of black and white stripes in order to reach a feeder and between different diagonally orientated gratings to gain access to their nest. Once bees were well trained on these two tasks, the discrimination task at the nest was changed so that bees had to distinguish between horizontal and vertical gratings at both sites. Whereas they still approached the horizontal grating to reach food, they now had to approach a vertical grating in order to return to their nest. The new task was learnt rapidly. Errors at the feeder did not increase during or after the acquisition of this potentially competing behaviour at the nest entrance. For a brief period during acquisition, bees showed some hesitation at the feeder and hovered for slightly longer before choosing between horizontals and verticals. After acquisition was complete, bees showed a slight increase in their preference for verticals over a more ambiguous stimulus of an array of dots. These findings are consistent with the hypothesis that different contextual signals are associated with approaching the nest or approaching the feeder, and that these contextual signals facilitate learnt associations between orientation detectors and motor commands.  相似文献   

6.
The roles of eidetic imagery and orientational cues, respectively, in the discrimination of visual patterns by honeybees (Apis mellifera) were evaluated by training the bees to discriminate between patterns consisting of periodic, black and white square wave gratings. Training and tests with a number of different pairs of patterns revealed that bees use orientational cues almost exclusively, if such are present, and make use of eidetic images only when orientational cues are not available. On the other hand, if a pattern carries strong orientational cues, bees learn the orientation even if it is irrelevant to the discrimination task on which they are trained.  相似文献   

7.
Pairs of black patterns on a white background, one rewarded the other not, were presented vertically each in one arm of a Y-maze. During training the locations of the black areas were changed every 5 min to prevent the bees using them as cues, but cues from edges were kept consistent. Bees detect orientation even in a gradient that subtends 36° from black to white (normal to the edge). Orientation cues in short lengths of edge are detected and summed on each side of the fixation point, irrespective of the lay-out of the pattern. Edges at right angles reduce the total orientation cue. The polarity of edges in a sawtooth grating is weakly discriminated, but not the orientation of a fault line where two gratings meet. Edge quality can be discriminated, but is not recognised in unfamiliar orientations. When spot location is excluded as a cue, the orientation of a row of spots or squares which individually provide no net orientation cue is not discriminated. In conclusion, when locations of black areas are shuffled, the bees remember the sum of local orientation cues but not the global pattern, and there is no re-assembly of a pattern based on differently oriented edges. A neuronal model consistent with these results is presented. Accepted: 5 March 2000  相似文献   

8.
During a century of studies on honeybee vision, generalization was the word for the acceptance of an unfamiliar pattern in the place of the training pattern, or the ability to learn a common factor in a group of related patterns. The ideas that bees generalize one pattern for another, detect similarity and differences, or form categories, were derived from the use of the same terms in the human cognitive sciences. Recent work now reveals a mechanistic explanation for bees. Small groups of ommatidia converge upon feature detectors that respond selectively to certain parameters that are in the pattern: modulation in the receptors, edge orientations, or to areas of black or colour. Within each local region of the eye the responses of each type of feature detector are summed to form a cue. The cues are therefore not in the pattern, but are local totals in the bee. Each cue has a quality, a quantity and a position on the eye, like a neuron response. This summation of edge detector responses destroys the local pattern based on edge orientation but preserves a coarse, sparse and simplified version of the panorama. In order of preference, the cues are: local receptor modulation, positions of well-separated black areas, a small black spot, colour and positions of the centres of each cue, radial edges, the averaged edge orientation and tangential edges. A pattern is always accepted by a trained bee that detects the expected cues in the expected places and no unexpected cues. The actual patterns are irrelevant. Therefore we have an explanation of generalization that is based on experimental testing of trained bees, not by analogy with other animals.Historically, generalization appeared when the training patterns were regularly interchanged to make the bees examine them. This strategy forced the bees to ignore parameters outside the training pattern, so that learning was restricted to one local eye region. This in turn limited the memory to one cue of each type, so that recognition was ambiguous because the cues were insufficient to distinguish all patterns. On the other hand, bees trained on very large targets, or by landing on the pattern, learned cues in several eye regions, and were able to recognize the coarse configural layout.  相似文献   

9.
Abstract. For many years, two opposing theories have dominated our ideas of what honeybees see. The earliest proposal based on training experiments was that bees detected only simple attributes or features, irrespective of the actual pattern. The features demonstrated experimentally before 1940 were the disruption of the pattern (related to spatial frequency), the area of black or colour, the length of edge, and the angle of orientation of a bar or grating. Cues discovered recently are the range, and radial and tangential edges, and symmetry, relative to the fixation point, which is usually the reward hole. This theory could not explain why recognition failed when the pattern was moved. In the second theory, proposed in 1969, the bee detected the retinotopic directions of black or coloured areas, and estimated the areas of overlap and nonoverlap on each test pattern with the corresponding positions in the training pattern. This proposal explained the progressive loss of recognition as a test pattern was moved or reduced in size, but required that the bees saw and remembered the layout of every learned pattern and calculated the mismatch with each test image. Even so, the same measure of the mismatch was given by many test patterns and could not detect a pattern uniquely. Moreover, this theory could not explain the abundant evidence of simple feature detectors. Recent work has shown that bees learn one or more of a limited number of simple cues. A newly discovered cue is the position, mainly in the vertical direction, of the common centre (centroid) of black areas combined together. Significantly, however, the trained bees look for the cues mentioned above only in the range of places where they had occurred during the training. These two observations made possible a synthesis of both theories. There is no experimental evidence that the bees detect or re-assemble the layout of patterns in space; instead, they look for a cue in the expected place. With an array of detectors of the known cues, together with their directions, this mechanism would enable bees to recognize each familiar place from the coincidences of cues in different directions around the head.  相似文献   

10.
The discrimination of patterns was studied in a Y-choice chamber fitted with a transparent baffle in each arm, through which the bees had a choice of two targets via openings 5cm wide. The bees see the positive (rewarded) and the negative (unrewarded) targets from a fixed distance. The patterns were bars (subtending 22 degrees x5.4 degrees at the point of choice) presented in one-quarter of each target. The bars were moved to a different quarter of the target every 5min, to make the location of black useless as a cue. A coincident presentation is when the bar on the left target is on the same side of the target as the bar on the right target. The bees learn the orientation cue when the presentation is coincident but otherwise cannot learn it. This experiment shows that bees do not centre their attention on the individual bars, otherwise they would always discriminate the orientation. Centring the target as a whole precedes learning. Having learned with the bar on one side of the targets, bees do not recognize the same cue presented on the other side. A separate orientation cue can be learned on each side. A radial/tangential cue is preferred to a conflicting orientation cue.  相似文献   

11.
Bees and wasps acquire a visual representation of their nest's environment and use it to locate their nest when they return from foraging trips. This representation contains among other features cues to the distance of near-by landmarks. We worked with two species of ground-nesting bees, Lasioglossum malachurum (Hymenoptera: Halictidae), Dasypoda hirtipes (Hymenoptera: Melittidae) and asked which cues to landmark distance they use during homing. Bees learned to associate a single cylindrical landmark with their nest's location. We subsequently tested returning bees with landmarks of different sizes and thus introduced large discrepancies between the angular size of the landmark as seen from the nest during training and its distance from the nest. The bees' search behaviour and their choice of dummy nest entrances show that both species of ground-nesting bees consistently search for their nest at the learned distance from landmarks. The influence of the apparent size of landmarks on the bees' search and choice behaviour is comparatively weak. We suggest that the bees exploit cues derived from the apparent speed of the landmark's image at their retina for distance evaluation.  相似文献   

12.
The discrimination of pattern disruption in freely flying honeybees (Apis mellifera) was examined. Bees were trained to discriminate at a fixed distance between a regularly repeated black/white pattern and the same pattern at a different magnification in targets of the same angular size. The locations of areas of black were regularly shuffled to make them useless as cues. The results of the experiments indicate that the bees discriminate the disruption of the pattern as a whole, irrespective of the actual pattern. Bees trained to prefer a larger period transfer to an even larger period, when given a forced choice with a pair of patterns of differing disruption from those they were trained on, as if their spontaneous preference has not been overcome. Bees trained to prefer a smaller period, however, prefer the former negative pattern rather than transfer to an even smaller period. These results show that the bees do not rely solely on learning the absolute period of a pattern nor the relative disruption of two patterns, and they are confused when these two cues conflict in tests with unfamiliar targets. Bees can discriminate between fields of view that differ in average disruption as a generalized cue, irrespective of pattern. Accepted: 7 April 1997  相似文献   

13.
Relational rules such as 'same' or 'different' are mastered by humans and non-human primates and are considered as abstract conceptual thinking as they require relational learning beyond perceptual generalization. Here, we investigated whether an insect, the honeybee (Apis mellifera), can form a conceptual representation of an above/below spatial relationship. In experiment 1, bees were trained with differential conditioning to choose a variable target located above or below a black bar that acted as constant referent throughout the experiment. In experiment 2, two visual stimuli were aligned vertically, one being the referent, which was kept constant throughout the experiment, and the other the target, which was variable. In both experiments, the distance between the target and the referent, and their location within the visual field was systematically varied. In both cases, bees succeeded in transferring the learned concept to novel stimuli, preserving the trained spatial relation, thus showing an ability to manipulate this relational concept independently of the physical nature of the stimuli. Absolute location of the referent into the visual field was not a low-level cue used by the bees to solve the task. The honeybee is thus capable of conceptual learning despite having a miniature brain, showing that such elaborated learning form is not a prerogative of vertebrates.  相似文献   

14.
Honey bees are well known to rely on stored landmark information to locate a previously visited site. While various mechanisms underlying insect navigation have been thoroughly explored, little is yet known about the degree of integration of spatial parameters to form higher-level spatial representations. In this paper we explore the basic interactions between landmark cues and directional cues, which stand at the basis of our understanding of piloting mechanisms. A novel experimental paradigm allowed us independent manipulation of each parameter in a highly controlled environment. The approach taken was twofold: cue-conflict experiments were first conducted to examine the interactions between positional cues and directional cues. The bees were then successively deprived of sensory cues to question the dependence of landmark navigation on context cues. Our results confirm previous findings that landmark cues are used in concert with external directional cues if present. Conversely, the bees' ability to locate a food site was not disrupted in the absence of an external directional reference. Thus, bees store landmark memories in an egocentric frame of reference and only loose and facultative associations between visual memories and compass cues are formed.  相似文献   

15.
1.  Honey bees (Apis mellifera, worker) were trained to discriminate between two random gratings oriented perpendicularly to each other. This task was quickly learned with vertical, horizontal, and oblique gratings. After being trained on perpendicularly-oriented random gratings, bees could discriminate between other perpendicularly-oriented patterns (black bars, white bars, thin lines, edges, spatial sinusoids, broken bars) as well.
2.  Several tests indicate that the stimuli were not discriminated on the basis of a literal image (eidetic template), but, rather, on the basis of orientation as a single parameter. An attempt to train bees to discriminate between two different random gratings oriented in the same direction was not successful, also indicating that the bees were not able to form a template of random gratings.
3.  Preliminary experiments with oriented Kanizsa rectangles (analogue of Kanizsa triangle) suggest that edge detection in the bee may involve mechanisms similar to those that lead to the percept of illusory contours in humans.
  相似文献   

16.
We investigated the ability of bees to associate a motor parameter with a sensory one. Foragers were trained to fly along a prescribed route through a large box which was partitioned into compartments. Access from one compartment to the next was through a hole in each partition. In two of the compartments, the back wall was covered with a grating of black and white stripes. Stripe orientations and the required trajectories differed in the two compartments so giving bees the opportunity to learn that one stripe orientation signalled the need to fly leftwards and the other rightwards.We videotaped the bees' trajectories through one of these compartments in tests with the grating on the back wall in one of four possible orientations. Flight trajectories to stripes in the training orientations were appropriately to the left or to the right implying that bees had linked a given flight direction to a given stripe orientation. With gratings oriented between the training values, flight directions were, under some conditions, intermediate between the training directions. This interpolation indicates that the training regime had induced a continuous mapping between stripe orientation and trajectory direction and thus suggests that trajectory direction is a motor parameter which is encoded explicitly within the brain. We describe a simple network that interpolates much like bees and we consider how interpolation may contribute to the ability of bees to navigate flexibly within a familiar environment.  相似文献   

17.
Entries of and time spent in a novel Y-maze arm that had changed from white (during acquisition trials) to black (during retention trials) were investigated in male and female Long-Evans hooded rats after the apparatus had been horizontally rotated through 180 degrees or left undisturbed. Maze rotation reduced responsiveness to this arm in males but not in females. When each arm was associated with a different set of visual cues, males significantly chose the novel arm only in the presence of intra- and extra-maze cues either alone or in combination. Females significantly selected the novel arm only in the absence of either type of cue, and in the presence of intra-maze cues alone. However, when the duration of acquisition trials was increased from 6 to 12min, females also selected the novel arm in the presence of both intra- and extra-maze cues. It was concluded that, while female rats appeared able to use egocentric (or response-related) cues for locating the novel arm, males were more dependent on allocentric (or place-related) cues following shorter acquisition trials. Because of the importance of such cues, it seemed that the task of recognizing which maze arm had changed in brightness defined the test as one of spatial memory.  相似文献   

18.
Landmark learning and visuo-spatial memories in gerbils   总被引:5,自引:0,他引:5  
The aim of this study is to understand what a rodent (Meriones unguiculatus) learns about the geometrical relations between a goal and nearby visual landmarks and how it uses this information to reach a goal. Gerbils were trained to find sunflower seeds on the floor of a light-tight, black painted room illuminated by a single light bulb hung from the ceiling. The position of the seed on the floor was specified by an array of one or more landmarks. Once training was complete, we recorded where the gerbils searched when landmarks were present but the seed was absent. In such tests, gerbils were confronted either with the array of landmarks to which they were accustomed or with a transformation of this array. Animals searched in the appropriate spot when trained to find seeds placed in a constant direction and at a constant distance from a single cylindrical landmark. Since gerbils look in one spot and not in a circle centred on the landmark, the direction between landmark and goal must be supplied by cues external to the landmark array. Distance, on the other hand, must be measured with respect to the landmark. Tests in which the size of the landmark was altered from that used in training suggest that distance is not learned solely in terms of the apparent size of the landmark as seen from the goal. Gerbils can still reach a goal defined by an array of landmarks when the room light is extinguished during their approach. This ability implies that they have already planned a trajectory to the goal before the room is darkened. In order to compute such a trajectory, their internal representation of landmarks and goal needs to contain information about the distances and bearings between landmarks and goal. For planning trajectories, each landmark of an array can be used separately from the others. Gerbils trained to a goal specified by an array of several landmarks were tested with one or more of the landmarks removed or with the array expanded. They then searched as though they had computed an independent trajectory for each landmark. For instance, gerbils trained with an array of two landmarks were tested with the distance between two landmarks doubled. The animals then searched for seeds in two positions, which were at the correct distance and in the right direction from each landmark.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Visual discrimination of black bars by honeybees was studied in a Y-choice apparatus with fixed vertical patterns at constant range. The problem is to discover how bees remember different degrees of complexity of the orientation cue. Previous conclusions with parallel gratings and single bars disagree. With broad bars versus orthogonal bars, the bees learn the orientation cue if the bars are centred at the same place, but they learn the position cue in the vertical direction when the bars are at different places on the two targets. With several bars on each target, the bees learn their orientation and positions. As fixed patterns increase in complexity, the bees follow a simple rule, to look only at the range of places where the cues were displayed. The frame of reference is disrupted when a black spot is added to the training pattern. There is abundant evidence that the bees do not re-assemble the pattern or learn shapes. The filters that detect the position and orientation cues are coarsely tuned, so that they respond in a graded way, but the memory of the range of directions of the cue, as seen from the point of choice, is more exact.  相似文献   

20.
The effects of subcutaneous injections of vasopressin were investigated in a study utilizing 72 male Long-Evans rats trained in an appetitive black-white discrimination T-maze task. Animals which were reinforced for choosing the black goal arm demonstrated prolonged extinction if they received vasopressin prior to daily extinction sessions. This effect was not observed in animals reinforced for choosing the white goal arm. Prolonged extinction was not found in animals which received vasopresson only during acquisition or in control animals which received saline. Speed and activity scores did not differentiate the groups. These results demonstrate that vasopressin can affect the behavior of rats on a positively-reinforced task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号