首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

2.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

3.
MOTIVATION: Multiple sequence alignments (MSAs) are at the heart of bioinformatics analysis. Recently, a number of multiple protein sequence alignment benchmarks (i.e. BAliBASE, OXBench, PREFAB and SMART) have been released to evaluate new and existing MSA applications. These databases have been well received by researchers and help to quantitatively evaluate MSA programs on protein sequences. Unfortunately, analogous DNA benchmarks are not available, making evaluation of MSA programs difficult for DNA sequences. RESULTS: This work presents the first known multiple DNA sequence alignment benchmarks that are (1) comprised of protein-coding portions of DNA (2) based on biological features such as the tertiary structure of encoded proteins. These reference DNA databases contain a total of 3545 alignments, comprising of 68 581 sequences. Two versions of the database are available: mdsa_100s and mdsa_all. The mdsa_100s version contains the alignments of the data sets that TBLASTN found 100% sequence identity for each sequence. The mdsa_all version includes all hits with an E-value score above the threshold of 0.001. A primary use of these databases is to benchmark the performance of MSA applications on DNA data sets. The first such case study is included in the Supplementary Material.  相似文献   

4.
While most of the recent improvements in multiple sequence alignment accuracy are due to better use of vertical information, which include the incorporation of consistency-based pairwise alignments and the use of profile alignments, we observe that it is possible to further improve accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on a few sets of benchmark alignments that are commonly used to measure alignment accuracy, and the average improvements in accuracy can be as much as 1–3% on protein sequence alignment and 5–10% on DNA/RNA sequence alignment. Unlike previous algorithms, consistent average improvements can be obtained across all identity levels.  相似文献   

5.

Background  

Identification of RNA homologs within genomic stretches is difficult when pairwise sequence identity is low or unalignable flanking residues are present. In both cases structure-sequence or profile/family-sequence alignment programs become difficult to apply because of unreliable RNA structures or family alignments. As such, local sequence-sequence alignment programs are frequently used instead. We have recently demonstrated that maximal expected accuracy alignments using partition function match probabilities (implemented in Probalign) are significantly better than contemporary methods on heterogeneous length protein sequence datasets, thus suggesting an affinity for local alignment.  相似文献   

6.
A method for simultaneous alignment of multiple protein structures   总被引:1,自引:0,他引:1  
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2004,56(1):143-156
Here, we present MultiProt, a fully automated highly efficient technique to detect multiple structural alignments of protein structures. MultiProt finds the common geometrical cores between input molecules. To date, most methods for multiple alignment start from the pairwise alignment solutions. This may lead to a small overall alignment. In contrast, our method derives multiple alignments from simultaneous superpositions of input molecules. Further, our method does not require that all input molecules participate in the alignment. Actually, it efficiently detects high scoring partial multiple alignments for all possible number of molecules in the input. To demonstrate the power of MultiProt, we provide a number of case studies. First, we demonstrate known multiple alignments of protein structures to illustrate the performance of MultiProt. Next, we present various biological applications. These include: (1) a partial alignment of hinge-bent domains; (2) identification of functional groups of G-proteins; (3) analysis of binding sites; and (4) protein-protein interface alignment. Some applications preserve the sequence order of the residues in the alignment, whereas others are order-independent. It is their residue sequence order-independence that allows application of MultiProt to derive multiple alignments of binding sites and of protein-protein interfaces, making MultiProt an extremely useful structural tool.  相似文献   

7.
Amino acid sequence alignment is an extremely useful tool in protein family analysis. Most family characteristics, such as the localization of functional residues, structural constraints and evolutionary relationships may be retrieved through the observation of the conservation pattern highlighted by the alignments. A quantitative score for the conservation in the alignment allows different stages of an alignment to be compared and consequently the alignment information to be efficiently exploited. Many scoring methods have been proposed during the last three decades. Claude Shannon's theory of communication (1948) paved the way for a consistent scoring of protein alignments by considering the residue (or symbol) frequency. A number of modifications have been proposed since that time, but the core statistical approach is still considered one of the best. By combining many database managing tools for treatment of protein sequences, a ClustalW software integration, a flexible symbols treatment and gap normalization functions, Entropy Calculator software has been developed. This new tool provides a global and optimal approach to multiple sequence alignment scoring by offering an easy graphic interface and a series of modification options that help in interpreting alignments and allow conservation pattern inferences to be performed.  相似文献   

8.
When aligning biological sequences, the choice of parameter values for the alignment scoring function is critical. Small changes in gap penalties, for example, can yield radically different alignments. A rigorous way to compute parameter values that are appropriate for aligning biological sequences is through inverse parametric sequence alignment. Given a collection of examples of biologically correct alignments, this is the problem of finding parameter values that make the scores of the example alignments close to those of optimal alignments for their sequences. We extend prior work on inverse parametric alignment to partial examples, which contain regions where the alignment is left unspecified, and to an improved formulation based on minimizing the average error between the score of an example and the score of an optimal alignment. Experiments on benchmark biological alignments show we can find parameters that generalize across protein families and that boost the accuracy of multiple sequence alignment by as much as 25%.  相似文献   

9.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

10.
MOTIVATION: The quality of a model structure derived from a comparative modeling procedure is dictated by the accuracy of the predicted sequence-template alignment. As the sequence-template pairs are increasingly remote in sequence relationship, the prediction of the sequence-template alignments becomes increasingly problematic with sequence alignment methods. Structural information of the template, used in connection with the sequence relationship of the sequence-template pair, could significantly improve the accuracy of the sequence-template alignment. In this paper, we describe a sequence-template alignment method that integrates sequence and structural information to enhance the accuracy of sequence-template alignments for distantly related protein pairs. RESULTS: The structure-dependent sequence alignment (SDSA) procedure was optimized for coverage and accuracy on a training set of 412 protein pairs; the structures for each of the training pairs are similar (RMSD< approximately 4A) but the sequence relationship is undetectable (average pair-wise sequence identity = 8%). The optimized SDSA procedure was then applied to extend PSI-BLAST local alignments by calculating the global alignments under the constraint of the residue pairs in the local alignments. This composite alignment procedure was assessed with a testing set of 1421 protein pairs, of which the pair-wise structures are similar (RMSD< approximately 4A) but the sequences are marginally related at best in each pair (average pair-wise sequence identity = 13%). The assessment showed that the composite alignment procedure predicted more aligned residues pairs with an average of 27% increase in correctly aligned residues over the standard PSI-BLAST alignments for the protein pairs in the testing set.  相似文献   

11.
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template‐defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile‐based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa . Proteins 2015; 83:411–427. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
13.
Shatsky M  Nussinov R  Wolfson HJ 《Proteins》2006,62(1):209-217
Routinely used multiple-sequence alignment methods use only sequence information. Consequently, they may produce inaccurate alignments. Multiple-structure alignment methods, on the other hand, optimize structural alignment by ignoring sequence information. Here, we present an optimization method that unifies sequence and structure information. The alignment score is based on standard amino acid substitution probabilities combined with newly computed three-dimensional structure alignment probabilities. The advantage of our alignment scheme is in its ability to produce more accurate multiple alignments. We demonstrate the usefulness of the method in three applications: 1) computing more accurate multiple-sequence alignments, 2) analyzing protein conformational changes, and 3) computation of amino acid structure-sequence conservation with application to protein-protein docking prediction. The method is available at http://bioinfo3d.cs.tau.ac.il/staccato/.  相似文献   

14.
多序列比对是生物信息学中基础而又重要的序列分析方法.本文提出一种新的多序列比对算法,该算法综合了渐进比对方法和迭代策略,采用加权函数以调整序列的有偏分布,用neighbor-joining方法构建指导树以确定渐进比对的顺序.通过对BAlibASE中142组蛋白质序列比对的测试,验证了本算法的有效性.与Multalin算法比较的结果表明,本算法能有效地提高分歧较大序列的比对准确率.  相似文献   

15.
We describe an exhaustive and greedy algorithm for improving the accuracy of multiple sequence alignment. A simple progressive alignment approach is employed to provide initial alignments. The initial alignment is then iteratively optimized against an objective function. For any working alignment, the optimization involves three operations: insertions, deletions and shuffles of gaps. The optimization is exhaustive since the algorithm applies the above operations to all eligible positions of an alignment. It is also greedy since only the operation that gives the best improving objective score will be accepted. The algorithms have been implemented in the EGMA (Exhaustive and Greedy Multiple Alignment) package using Java programming language, and have been evaluated using the BAliBASE benchmark alignment database. Although EGMA is not guaranteed to produce globally optimized alignment, the tests indicate that EGMA is able to build alignments with high quality consistently, compared with other commonly used iterative and non-iterative alignment programs. It is also useful for refining multiple alignments obtained by other methods.  相似文献   

16.
Accurate multiple sequence alignments of proteins are very important to several areas of computational biology and provide an understanding of phylogenetic history of domain families, their identification and classification. This article presents a new algorithm, REFINER, that refines a multiple sequence alignment by iterative realignment of its individual sequences with the predetermined conserved core (block) model of a protein family. Realignment of each sequence can correct misalignments between a given sequence and the rest of the profile and at the same time preserves the family's overall block model. Large-scale benchmarking studies showed a noticeable improvement of alignment after refinement. This can be inferred from the increased alignment score and enhanced sensitivity for database searching using the sequence profiles derived from refined alignments compared with the original alignments. A standalone version of the program is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/REFINER) and will be incorporated into the next release of the Cn3D structure/alignment viewer.  相似文献   

17.
Pairwise optimal alignments between three or more sequences are not necessarily consistent as a whole, but consistent and inconsistent residues are usually distributed in clusters. An efficient method has been developed for locating consistent regions when each pairwise alignment is given in the form of a “skeletal representation” (Bull. math. Biol. 52, 359–373). This method is further extended so that the combination of pairwise alignments that gives the greatest consistency is found when possibly many alignments are equally optimal for each pairwise comparison. A method for acceleration of simultaneous multiple sequence alignment is proposed in which consistent regions serve as “anchor points” limiting application of direct multi-way alignment to the rest of “inconsistent” regions. Dedicated to Prof. Akiyoshi Wada on the occasion of his 60th birthday.  相似文献   

18.
We describe a method to identify protein domain boundaries from sequence information alone based on the assumption that hydrophobic residues cluster together in space. SnapDRAGON is a suite of programs developed to predict domain boundaries based on the consistency observed in a set of alternative ab initio three-dimensional (3D) models generated for a given protein multiple sequence alignment. This is achieved by running a distance geometry-based folding technique in conjunction with a 3D-domain assignment algorithm. The overall accuracy of our method in predicting the number of domains for a non-redundant data set of 414 multiple alignments, representing 185 single and 231 multiple-domain proteins, is 72.4 %. Using domain linker regions observed in the tertiary structures associated with each query alignment as the standard of truth, inter-domain boundary positions are delineated with an accuracy of 63.9 % for proteins comprising continuous domains only, and 35.4 % for proteins with discontinuous domains. Overall, domain boundaries are delineated with an accuracy of 51.8 %. The prediction accuracy values are independent of the pair-wise sequence similarities within each of the alignments. These results demonstrate the capability of our method to delineate domains in protein sequences associated with a wide variety of structural domain organisation.  相似文献   

19.
MOTIVATION: Alignment of RNA has a wide range of applications, for example in phylogeny inference, consensus structure prediction and homology searches. Yet aligning structural or non-coding RNAs (ncRNAs) correctly is notoriously difficult as these RNA sequences may evolve by compensatory mutations, which maintain base pairing but destroy sequence homology. Ideally, alignment programs would take RNA structure into account. The Sankoff algorithm for the simultaneous solution of RNA structure prediction and RNA sequence alignment was proposed 20 years ago but suffers from its exponential complexity. A number of programs implement lightweight versions of the Sankoff algorithm by restricting its application to a limited type of structure and/or only pairwise alignment. Thus, despite recent advances, the proper alignment of multiple structural RNA sequences remains a problem. RESULTS: Here we present StrAl, a heuristic method for alignment of ncRNA that reduces sequence-structure alignment to a two-dimensional problem similar to standard multiple sequence alignment. The scoring function takes into account sequence similarity as well as up- and downstream pairing probability. To test the robustness of the algorithm and the performance of the program, we scored alignments produced by StrAl against a large set of published reference alignments. The quality of alignments predicted by StrAl is far better than that obtained by standard sequence alignment programs, especially when sequence homologies drop below approximately 65%; nevertheless StrAl's runtime is comparable to that of ClustalW.  相似文献   

20.
SUMMARY: Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号